Jdeckle.de

Diagram Interchange for UML

Marko Boger!, Mario Jeckle?, Stefan Mueller?, and Jens Fransson®

1 Gentleware AG,
Vogt-Koelln-Str. 30,

22527 Hamburg, Germany
marko.boger@gentleware.de
http://wuw.gentleware.de

2 DaimlerChrysler Research and Technology,
Wilhelm-Runge-Str. 11,

89013 Ulm, Germany
mario.jeckle@daimlerchrysler.com
http://wuw.jeckle.de
3 University of Hamburg,
Vogt-Koeln-Str. 30,

22527 Hamburg, Germany
stefan@stmonline.de, jfransson@gmx.de

Abstract. XMI is a standardized mechanism for exchanging UML mod-
els. However, this mechanism does not sufficiently fulfill the goal of a
model interchange: it does not include the exchange of diagram infor-
mation. XMI as defined for UML 1.x is only capable of transporting
information on the elements in an UML model but not information as
to how these elements are represented and laid out in diagrams.

This paper proposes an extension to the UML metamodel to represent di-
agram information in a graph-oriented manner. The approach presented
is able to fix the deficiency for UML 1.x and solve the problem for UML
2.0. The approach was handed in for standardization to the OMG in
response to the Diagram Interchange RFP.

1 Introduction

The Unified Modeling Language (UML) [8] is a modeling language for object-
oriented software systems with a strong emphasis on graphical representation.
It is employed throughout the software development process, and a wide vari-
ety of different kinds of tools can be utilized during this process. Tools vary
greatly from those geared to design the diagrams or to check the consistency of
models to those suitable for storing them for persistence or for versioning, for
generating code, for preparing demonstrations, presentations or documentation
and many more. The ability to seamlessly use and combine all of these various
tools is highly valuable and desirable. Accordingly, a standardized mechanism for
representing (and thus exchanging) model information was included in the first
UML standard. However, the mechanism laid out in UML 1.x supports only the
definition of elements in a model. While this is important for tools that check

Digitally signed by
Mario Jeckle
Reason: | am the
co-author of this
document
Location: www.
jeckle.de

Date: 2004.04.06
13:50:12 +02'00'



2 Boger, Jeckle et al.

consistency of a model or generate code, this information is not sufficient for
graphically oriented tools. This excludes a wide variety of tools which make use
of the graphical information, including UML tools themselves. In this respect,
the model interchange mechanism of UML 1.x falls short and the need to cor-
rect this has been recognized and addressed by the Object Management Group
(OMG) in a Request for Proposals (RFP) for Diagram Interchange. This paper
summarizes a response to that request by a syndicate made up of Gentleware,
DaimlerChrysler, Telelogic, and Adaptive.

The general mechanism applied within the OMG to transport meta-information
is the XML Metadata Interchange format (XMI) [10]. XMI is an application of
the Extensible Markup Language (XML) [11] standardized by the World Wide
Web Consortium (W3C) and was designed to be capable of transporting infor-
mation which is to a great degree internally referential. Object-oriented models
and metamodels, in particular, fall into this category. XMI is currently applied by
many commercial tools to transport UML models. This is achieved by employing
a standardized XML grammar able to represent all the modeling constructs de-
fined by the UML metamodel. The XMI format is defined by an XML Document
Type Definition (DTD), which is generated by applying the rules for DTD gener-
ation as also defined by XMI to the concrete UML metamodel itself. In summary,
the XMI standard, which consists of the XML DTD designed for interchanging
UML models, co-offers a defined process for generation of XMI-compliant DTDs.

To distinguish between XMI in general and its application to UML, we will
refer to the latter format as XMI[UML)] in this paper. This mechanism has proved
to be highly useful despite the fact that graphical information was not included.

UML diagrams, similar to UML models, may be described by means of a

metamodel. The term metamodel here is used in the same way the UML does it
throughout its specification, as a model of model defining some aspects of the
structural semantics. The metamodel itself is formulated re-using the language
it describes, which is in our case UML.
In our approach we suggest a separate metamodel for diagram information which
can easily be added as a separate package to the existing UML metamodel. Just
as with the UML metamodel, XMI can be applied to transport instances of this
diagram metamodel. The corresponding DTD (which simply extends the DTD of
XMI[UML)) is created directly from the metamodel by a generator which is com-
pliant to UML’s meta-metamodel-the OMG-standardized Meta Object Facility
(MOF). This format will be referred to as XMI[DI] in this paper. The conjunc-
tion of both, which makes up the complete model interchange mechanism, will
be referred to as XMI[UML+DI] or simply as XMI for reasons of brevity.

The metamodel proposed conforms to the MOF metamodel facility [6]. XMI
defines how to create a DTD or an XML schema from an MOF-compliant meta-
model and how the schema is to be applied to XMI. That means that once an



Diagram Interchange for UML 3

MOF compliant metamodel has been agreed on, its representation in XMI and
the corresponding DTD is taken care of.

The metamodel itself was developed with two main goals in mind. First, it
was to flexibly extend the existing UML metamodel (as well as its future revi-
sions) without either interfering with it or modifying it. At the same time it was
to carry as little redundant information as possible and instead reference the
UML metamodel to access that information. Second, it was to allow any tool
to easily render the diagram from the given information. This includes not only
UML tools but also web browsers, office suites, graphical editors, etc.

The tools mentioned are very different in their needs. While UML tools usu-
ally carry out the rendering of model elements to lines and text themselves, text
editing tools have no knowledge at all about model elements and require a di-
agram to take on a common graphical format. And graphic tools require a rich
vector-oriented format for manipulating and scaling.

SVG [7], the Scalable Vector Graphics format, is a new W3C standard which
promises to be supported by a wide variety of these tools. It is based on XML
and can easily be loaded and processed and then transformed into many other
formats. It is equally suited for text tools, office suites, and graphic tools. It
is also suitable for web browsers, which are expected to directly support SVG

in the nearer future (note that, in the interim, freely available plug-ins may be
used).

However, SVG is not well suited for UML tools. UML tools do not require
merely the lines and text but information at a higher level: for they not only
display the diagrams graphically, they also need a semantic understanding of the
model elements represented by the graphical primitives.

Yet one of the great advantages of XML is that data expressed in any XML
data format can easily be transformed into a different XML data format as long
as all the necessary information is present. Therefore we suggest a metamodel
transported using XMI[DI] and provide a transformation from this model to SVG
using the Extensible Stylesheet Language for Transformations (XSLT) which de-
fines a XML vocabulary that forms a Turing-complete functional programming
language capable of transforming XML input into arbitrary textual streams as
well as into XML. This approach makes it possible to satisfy the needs of a very
wide range of tools. All other required formats can then be produced from this.

So, what is the abstraction which commonly expresses the additional infor-
mation to allow interchange for all diagrams in UML? One alternative is to
introduce special classes for every kind of shape UML diagrams consist of. How-
ever, if UML is to be extended or its scope broadened or if the core mechanisms
are to be reusable for other modeling notations, this approach seems too inflex-



4 Boger, Jeckle et al.

ible. The diagram interchange should not restrict the extensibility of UML. If
possible, the diagram interchange mechanism should not have a notion of con-
crete shapes or other elements. The drawing of the concrete forms of the shapes
used are the responsibility of the UML tools or of an SVG renderer, i.e. a soft-
ware component visually displaying the two dimensional object described by the
XML encoded SVG input.

It can be observed that most diagrams in UML follow the graph scheme as
known from graph theory: they consist of nodes (which can be rectangles, ovals,
circles or other shapes) and edges (connecting lines between the nodes with dif-
ferent arrows and shapes at the ends). Nodes may contain compartments and
annotations, edges may have annotations attached to them. Some nodes may be
nested in others, edges always connect two nodes.

The graph scheme is a very powerful, well-understood abstraction that is used
in many areas of visual modeling. It is the abstraction used in our approach and
proves to be fully sufficient, as will be discussed in this paper.

After the introduction to the topic in the current section, we provide an
architectural overview. Section 3 discusses the diagram metamodel in detail and
illustrates how it extends the UML metamodel. Section four describes how this
can be applied to render diagram information in any kind of tool. Finally, we
conclude and summarizes the results.

2 Architectural Overview

The XMI[UML] extension XMI[UML+DI] utilizes several technologies to create
both its metamodel and instantiated objects of the model mentioned. The tech-
nologies involved have been published as standards by the OMG and the W3C
and are in the public domain. The core technology, which serves as foundation
for all the others involved in this process, is XML. It consists of basic rules (e.g.
well-formedness) specifying how to create documents, describing their content
by tagging. This commonly accepted mechanism is supported by many commer-
cially available tools. The figure below depicts all the technologies involved in
the creation process of the metamodel and DTD.



Diagram Interchange for UML 5

»MI Serizlization

Y

e il ‘

CASE Tool Translate Using XMI[U ML]
MOF Prafile Rul 4
Supporting UML 1.x and rofile Rules UML-DI Metamodel Document

MOF Profile UML-DI Metamodel

F 3

KM 1.0 DTD
Production Rules

Y

XMI[MOF] UML + UML-DI
UML-DI Metamodel Document DTD

Fig. 1. XMI[DI] DTD creation process

The XMI[DI] metamodel is created with a UML modeling tool: a MOF-
compliant metamodel (i.e. a model of a model, or M2 for short) is created using
the UML profile for MOF, describing the UML M2 extension. This tool needs
the capability to create an XMI[UML] document compliant to XMI version 1.0
by serializing the model to an XML stream. And, according to the rules set out
by the grammar defined by XMI[UML] 1.0 DTD, this is a document.

As mentioned, the generation process produces an XMI 1.0-conformant doc-
ument which contains the content of the metamodel created with the help of
the UML tool. In order to generate the new DTD for [UML4DI], the new M2
must be expressed in MOF form by translating the XMI[UML] document to
an XMIMOF] document. The rules for the mapping from the profile to MOF
are included in the UML profile for MOF. Another option would be to generate
the XMIMOF] document directly from the CASE tool. Finally, the XMI DTD
production rules can be applied to the MOF representation of the M2. Using the
rules in the XMI Production for XML Schemas specification, an XML schema
can also be generated.

Based on this extended XMI[UML+DI] metamodel, it is now possible to in-
clude the graphical information of an XMI[UML] model when exchanging it.
Furthermore several representations of a model may be created. One alternative
is to create a representation in SVG.

SVG is a technology geared to describe two-dimensional vectorized graphics
in a clear text (XML-based) format and derive a visualization from this. It was



6 Boger, Jeckle et al.

recently published in the form of a corresponding recommendation by the W3C.
In contrast to plain graphics such as bitmaps, it is-just to mention some of the
possibilities-possible to scale such graphics, rotate them or invoke these methods
on single elements of a graphic. SVG is also capable of handling user interaction,
offering a wide range of options when working with SVG-based graphics.

XSLT [12] is another W3C recommendation which defines how to create
stylesheets (in themselves XML documents) for the transformation of one XML
document into another (usually also an XML) document. In this case, the
stylesheet is used to transform the XMI[UML+DI] XML document containing
the UML model and diagramming information into an SVG XML document con-
taining full graphical rendition information which can be displayed by a browser.
Note that XSLT engines to perform stylesheet-driven transformations are com-
monly available, including some in open source (most notably Xalan from the
Apache project).

The following diagram sketches an overview of the technologies involved in
the creation of an SVG document from a UML modeling tool.

M1 Serializanon
>

UML Model KMI[UML+DI] UML + UML-DI
Document DTD
p—®

Genea“oanrn:ess

Browser + SVG Plug-in SVG Document SVG DTD

Fig. 2. SVG graphic creation

As when creating the XMI[DI] extension, the starting point is a UML model-
ing tool used to describe a model. On the basis of this model, an XMI document
is created by a serialization process using the XMI 1.0 production rules. The re-
sult is again an XMI 1.0 document containing the content and, in contrast to the
past, the graphical information of the model. The document may be validated
against the XMI[UML] 1.x DTD containing the XMI[DI] extension to check the



Diagram Interchange for UML 7

syntactic correctness of the XMI document. In addition, the well-formedness of
the document is always checked. The next step is to create an SVG document out
of the XMI source document. This is done by using an XSLT stylesheet, which
only has to be produced once and is then applicable to all XMI documents con-
taining the XMI[DI] extension. Applying this stylesheet to the XMI[DI] source
document generated yields the SVG document as output. The SVG is used with
an SVG viewer to visualize the model by rendering the input document. These
viewers may be integrated as a plug-in in any common Internet browser. As a
result, it is possible to view and navigate UML diagrams in a browser with a
high level of user interaction, which can be designed to be as intuitive and easy
as UML tools can currently be deployed.

3 Proposed Metamodel Extension

The following chapter sets out the metamodel for diagram information which the
diagram interchange mechanism relies on. It is an extension of the UML meta-
model (currently based on UML 1.4). The existing mechanism of XMI[UML] to
exchange models via XMI includes only the model information, leaving out the
graphical information. The extension described in the following targets includ-
ing the graphical information of diagrams in UML models, thus linking graphical
elements to their model elements.

This extension adds a new package to the state-of-the-art UML metamodel
packages. The existing standard is not changed in any way. Also, changes to the
UML metamodel due to version updates should not impact this model as long as
the high-level notion of ModelElement is maintained. The suggested extension
and the UML metamodel are kept largely independent with solely links from the
extension to the UML metamodel included. Thus, we achieve a clean separation
of graphical and model information.

In addition, conflicts with tools supporting the current standard are avoided
and full backward compatibility is maintained. Flexibility for future extensions
to UML itself is ensured.

The proposed package contains elements for reflecting the diagram informa-
tion of any diagram element of the standard UML. Tool-specific extensions can
be defined in additional packages. For example, if a tool adds drawing capabil-
ities for additional shapes, then an additional package to describe these can be
provided. The underlying reason is to make sure that tools which do not support
these additional extensions can still generate a graphical representation simply
by ignoring the information from an extra package.

Figure 3 depicts the class diagram representing the metamodel for the dia-
gram information.



8 Boger, Jeckle et al.

Froperty 0.7 Graphic Bement
-
ey ; Sting | #igHidden : bodean
+ualue  Siring +propatiss +depth - doible
stoplet - Point
0.1 0.7
SemarticlHooel Be et i
hay
Jmadeverson : Sming g fordered}
+modelType : Sring

0.1 | +emantcdel

. 0. TenBermert
~ setBements [

+alue : Sming

[ I | “eotansigh s
\J/ \l/ Hink [
| Core- | ‘ P ‘ LinkedTo
e e
+edges o.x +eonnectors AN
Edge Connestor o
{ 2 +eonn edors
+mimeTape ; Striny
o
Haypoints 2]
Point
+x: double Ciagram
+y dauble s—
{ordared} +name ; &ring
Hpaines £ +z0omFator : dowble
ke port - Point

Fig. 3. Metamodel for diagram information

3.1 Extended Graph Model

This metamodel is built upon a metamodel for graph modeling. The core classes
are Node and Fdge. They are linked via a class called Connector. A Connector
is a connection endpoint for an Edge which is owned by a Node. Hence, every
Edge is linked to Connectors and the position of the Connector exactly marks
the connection point of the Edge to the Node. A Connector may be endpoint for
more than one Edge, but every Edge has exactly two Connectors. The superclass
of this graph element is the class GraphFElement. These elements allow a pure
mathematical graph to be described without any semantic meaning.

Other graphic elements besides pure graph elements may also be described,
e.g. graphic primitives such as circles and rectangles with no graph context.
These have to inherit from the superclass for all graphic elements, GraphicEle-
ment. The inheritance from GraphicElement is intended be employed as an ex-
tension mechanism for this metamodel. Any sublasses of GraphicElement added
should be placed in their own package, e.g. a package for graphic primitives.

Another extension of the pure graph model is achieved by building a hierarchy
of nested nodes. Each Node may contain an unlimited number of GraphicEle-
ments. With this concept, every Node could contain an entire subgraph.



Diagram Interchange for UML 9

A special Node is the Diagram. It is the topmost Node of any graph or dia-
gram in this terminology and recursively contains all other GraphicElements. A
Diagram has a name and a type, which is important for the semantic context of
the diagram (see below). It also has a zoom factor, which allows it to be shown
in a different size.

Note that any graph element may be linked to other diagrams. These ele-
ments could be used if a graph element can be represented by another diagram,
e.g. on a more detailed level or if the graph element has a special semantic rela-
tion to other diagrams. These links may have special zoom factors, so a diagram
can be displayed with different zoom factors in each context.

The appearance of GraphicElements can be managed by properties. In the
pipeline is a standard set of properties to be defined by the UML 2.0 specifica-
tion and to contain font family and size as well as line style, thickness, and color.
These properties, however, are optional. Every property overwrites any existing
property of the same type of an enclosing GraphicElement. If a property is not
set, the GraphicElement utilizes the property of the enclosing Node. Properties
of different types could be added but should not be part of any standardization.
GraphicElement has a depth to indicate the position of the z-coordinate in order
to fix the elements which should be shown if they are overlapping.

The attribute isHidden allows a GraphicElement to not be shown and, if these
should exist, all nested elements if this attribute is set to true. Even though the
elements are not shown, they still exist. This means that if they are made visible
by setting isHidden to false, they appear the same as before.

The class TextElement allows the representation of text. It contains a name/value
pair, enabling the text to be linked to a semantic context (see below).

3.2 Positioning

Position and size of elements are specified through the class Point. The point
topLeft of nodes, connectors, and text elements indicates the position of the el-
ement, while the optional point bottomRight allows the specification of a size.
If this point is missing, the size must be calculated by considering the nested
elements. For TextElements, the position is optional. If the position is not given,
it is calculated by considering previous elements. For example, in a text such as
an operation which consists of many TextElements the position of any TextEle-
ment is determined by the position of the previous TextElement.

Edges consist of an ordered list of waypoints and are represented by lines
between these points. If a waypoint is an instance of a BezierPoint, the edge is
represented by a Bezier curve.



10 Boger, Jeckle et al.

Diagrams do not need to have a surrounding (parent) element and the posi-
tion (topLeft) of a diagram is (0, 0) by default. The point bottomRight indicates
the size of the diagram. The viewport is the coordinate of the point in the dia-
gram which is currently shown in the top left position of the view. The viewport
coordinate does not necessarily have to be (0, 0) if the view has been scrolled.

Every coordinate represented by Point is relative to the surrounding element
if there is one. In order to change the position of a surrounding element includ-
ing its subelements, only the coordinates of the surrounding element need to be
changed. A typical example for such a surrounding element is represented by
the rectangle forming a class symbol which contains all the text blocks used to
represent attribute names, etc.

3.3 The Semantic Model

This model can be used to represent graphs with an additional semantic meaning
by linking a GraphElement to the ModelElement of a semantic model via the Se-
manticModelElement. Every GraphElement may have an optional link to an in-
stance of a concrete subclass of SemanticModelElement, such as UMLSemantic-
ModelElement. This allows supplementation of UML-specific information to the
graph. Other semantic models might be added as well, e.g. Entity-Relationship
diagrams. The concrete SemanticModelElement has a link to a model element
of the metamodel of the semantic model, e.g. the UMLSemanticModelElement
is linked to elements of the UML metamodel. Note that this is a unidirectional
link: there is no need for elements of the semantic model to have a link to their
representation elements.

The model is designed to minimize the amount of redundant information.
For this reason, there is no extra attribute to indicate the semantic type of an
element. To ascertain the semantic type of an element, the SemanticModelEle-
ment must be examined. If there is no SemanticModelElement directly attached
to the element, the SemanticModelElement of the surrounding element and, if
there are any, the SemanticModelElement of the children have to be examined.

This model may be used in concert with the UML metamodel to represent any
UML diagram through a graph with semantic links to the UML metamodel. For
most of the UML diagrams, this can be done intuitively. Sequence diagrams are
somewhat different, but there are ways to represent them using this metamodel
and to unambiguously associate every model element with a graph element.

For example, in a class diagram, classes, interfaces, and packages are repre-
sented by Nodes, while associations, generalizations, and dependencies are rep-
resented by Edges. These Nodes and Edges have links to the related model
elements of the UML metamodel. A class may contain multiple compartments.
These are represented through nested nodes of the class-node with no link to the



Diagram Interchange for UML 11

semantic model, since compartments are not part of the UML metamodel-only
part of its representation. Attributes and operations are nested nodes of the
compartment nodes with a link to the corresponding attributes and operations
of the UML metamodel. An attribute has properties such as visibility, type, and
return value. These are represented by TextElements, e.g. textElement.name =
visibility, textElement.value = public. TextElements are typically used to repre-
sent attributes of model elements which can be expressed through text.

The appearance of the symbols at the ends of the edges (associations, gen-
eralizations etc.) are figured out by the corresponding UML metamodel elements.

Other diagrams are represented in a similar fashion. The tool which uses this
metamodel is responsible for the exact representation of elements which refer to
semantic model elements. For example, the tool has to know that a node repre-
senting a class should be visualized through a rectangle. Its position, size, line
style etc. are determined by the objects of the metamodel. If the shape of an
element is complex, e.g. an actor in UML, a Node can optionally be linked to a
GraphicElement representing the shape of the Node. This may be a subclass of
GraphicElement which contains an SVG vector graphic.

4 Transformation to Graphical Representation

4.1 Transformation to SVG via XMI

Expressed in XMI, a model can be interchanged between tools that are aware of
OMG’s XMI format. However, this format is not very consumable for the human
reader nor for tools that are purely graphically oriented. For this reason, a trans-
formation into a graphical format is needed. The most promising format for this
purpose is SVG. The format proposed in this paper is well suited for a trans-
formation into SVG and was explicitly designed to make this transformation as
straightforward as possible. Both data formats, XMI and SVG, are applications
of XML, and the common set of XML tools can be used to manipulate them.
XSLT [12] is such a mechanism, which is designed to transform one XML format
into another. For proof of concept, we implemented a set of XSLT scripts in
order to transform a model given in XMI[UML+DI] into SVG. Currently, this
is applied to information regarding class diagrams only.

These style sheets extract information from an XMI file with model and dia-
gram interchange-related data and build an SVG document. The resulting SVG
file contains the representation of a single class diagram in UML notation.



12 Boger, Jeckle et al.

4.2 Using the Metamodel Extension for Diagram Interchange in an
Application

In this section, we introduce a possible approach which allows the integration
of the metamodel extension for diagram interchange into an application. The
details described belong to an ongoing project whose goal is to implement a
framework in Java which allows viewing and editing of UML graphs.

For better understanding, some terms which will be used in this section are
defined below:

— Metamodel[UML]: the UML metamodel.
— Metamodel[DI]: the metamodel extension for diagram interchange.
— Metamodel[UML + DIJ: the combined metamodel.

The term model/. .. ] describes an instance of the metamodel]. . .] created by
an MOF-compliant generator. For reasons of brevity, metamodel is used as a syn-
onym for metamodel[UML+DI] and model as a synonym for model[UML+D]]
when there is no danger of confusion. It is essential to note that the meta-
model[DI] allows access to the metamodel[UML] via the UMLSemanticMod-
elElement as explained in section 3.

4.3 Extending the Metamodel for Diagram Interchange with
Custom Operations

In order to simplify interchangeability between different UML tools, the meta-
model[DI] itself should be completely passive, i.e. there are no operations in its
classes. However, the model[DI] created from the metamodel[DI] by an MOF-
compliant generator may have operations. Nevertheless it would be desirable to
extend the model[DI] itself by adding custom operations in order to simplify its
use in an application.

To solve this dilemma, a variation of the flyweight design pattern [2] was
realized in a pilot implementation which assigns a tool class to each class of the
model. Tool classes are obviously not subject to the UML diagram interchange
discussed here since they have to be implemented for the chosen tool by the
tool vendor itself. These classes contain the operations which are missing in the
corresponding model class. The tool classes form exactly the same inheritance
hierarchy as the classes of the metamodel[DI|. At runtime, a single instance of
a tool class is assigned to all instances of the corresponding model[DI] class.
For this reason, the instance of the model class concerned must be passed as a
parameter to each call of an operation of the tool class. Aside from this small
drawback, this implementation provides nearly all the advantages which the di-
rect integration of the operations into the metamodel[DI] would have offered.
For example, it is possible to override methods within the inheritance hierarchy
of the tool classes as would have been done in the inheritance hierarchy of the



Diagram Interchange for UML 13

metamodel[DI] classes.

4.4 The Concept of Interaction

As the general concept of interaction, a variation of the model-view-controller
architecture (MVC) [4] was applied. To be exact, two models are employed, be-
cause data is present in both the model[UML+DI] and in the GUI widgets. This
is a result of the usage of Java/Swing GUI elements which combine the Model
and the View.

A class called Renderer is a synonym for the View.

The Renderer reads data from the model[UML4DI] and transfers it to the
GUI element, while a class called Controller takes care of the inverse direction.
It reads the data from the GUI element and transfers it back into the model.
In addition, the Renderer listens for changes in the model[UML+DI] in order
to transmit them autonomously into the GUI. Here too, the Controller has the
inverse task, i.e. to listen for changes in the GUI and to transmit them indepen-
dently into the model[UML+DI].

Despite this symmetry, it seemed appropriate to break it in order to model
Controllers as attributes of a Renderer. The reason for this is that the meta-
model[UML+DI] has a very fine granularity, while the GUI elements used by a
Renderer are often extremely complex. For example, an operation in the meta-
model extension consists of several TextElements, while it would be appropriate
for a Renderer to use a single text input field for the entire operation. In this
case, a Renderer would own several Controllers to parse the text in the input
field and transfer the result back to the model[UML+DI]. This simple approach
would not be possible if a Renderer had a forced 1:1 relationship to a Controller.

4.5 Renderer and Controller hierarchies

Figure 4 shows a realization of the Renderer and Controller hierarchies. Each
Renderer and Controller owns an association to a GraphicElement, i.e. the
model[DI]. In each hierarchy there exists one class which corresponds to a class
of the model[DI]. While both hierarchies are symmetrical, this symmetry is not
a requirement as described above. The instances of Renderers form an object hi-
erarchy at runtime, which can be seen from the associations children and parent
of the class Renderer. Hence, like usual GUI elements, e.g. Java/Swing widgets,
Renderers can be nested. This nesting is a simplification of the hierarchy of
instances of the model classes which is built from the following associations:

— Parent — children between Node and GraphicElement.
— QOwner - textElements between GraphElement and TextElement.



14 Boger, Jeckle et al.

— Node — connectors between Node and Connector.
— FEdges between Connector and Edge.

| ContrallerRendererBase \7'\. GraphicElzment
children parent Z%
0.* i [

1.%
| Renderer |¢ -
Fraphic ElementRenderer Graphic ElementController
i i

Cantroifer

| GraphElementRenderer ‘ |Tex‘tE\ementRenderer | | GraphElementCantrolier ||Te>dEIemerﬁCorrtroller |
ConnectorRenderer ‘ |EdgeRenderer | |NodeRenderar | |Connec‘torCorﬂroller | | EdgeCortroller | ‘NodaCDrﬂroHer ‘

A AN
DiagramRencerer DisgramController

Fig. 4. Renderer and Controller hierarchies

This nesting allows Renderers to be built recursively at runtime and simplifies
their use. For example, all the Renderers of a diagram are accessible indirectly
through the Renderer at the root of the hierarchy, i.e. the DiagramRenderer.

The classes shown are only the most simple ones that are necessary for the
integration of the diagram interchange information. For the editable graphical
representation of complex UML elements such as a class, it may be desirable
to extend the Renderer hierarchy by an additional Renderer for UML classes.
This would not necessarily mean introducing a corresponding Controller, as the
existing Controllers may be sufficient.

5 Conclusion

This paper describes the diagram interchange metamodel, which is an exten-
sion to the UML metamodel. It allows the standardization of the exchange of
graphical information needed by UML models. The basic idea is that each UML
diagram can be represented as a graph extended by the concept of nested nodes.

The metamodel extension needed to support diagram-specific information is
linked to the UML metamodel. As this is a general mechanism, links to other
semantic models are also possible. These might be other graphical description



Diagram Interchange for UML 15

languages, such as Entity /Relationship diagrams. This concept is flexible enough
to support future versions of UML because the diagram interchange metamodel
makes no presumptions about the structure of the semantic model. Instead, the
application is responsible for its correct interpretation.

An example for such an application is an SVG transformer, which allows
viewing of UML diagrams in a standard web browser. Notably, the SVG no longer
includes semantic information. An approach for integrating the metamodel used
to describe the diagram interchange related data into a Java-based application
has been illustrated.

References

1. Harel, D. and Gery, E.: Executable Object Modeling with Statecharts.
Proceedings of the 18th International Conference on Software Engineering,
http://citeseer.nj.nec.com/article/harel97executable.html, 1997.

2. Gamma, E., Helm, R., Johnson, R., and Vlissides, J.: Design Patterns. Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1994.

3. Gentleware: http://www.gentleware.com, 2001.

4. Glenn E. Krasner and Stephen T. Pope. A Cookbook for Using the Model-View
Controller User Interface Paradigm in Smalltalk-80. Journal of Object-Oriented
Programming, September 1988.

5. Boger, M., Baier, T., Wienberg, F, Lamersdorf, W.: Extreme Modeling. Proceedings
of the 1st International Conference on Extreme Programming, Italy, 2000. Addison-
Wesley, 2001.

6. Object Management Group (ed.): Meta Object Facility (MOF) Specification
v1.3, Framingham, USA http://cgi.omg.org/docs/formal/00-04-03.pdf, March
2000.

7. Ferraiolo, J. (ed.): Scalable Vector Graphics (SVG) Specification v1.0, W3C Rec-
ommendation, Boson, USA, http://www.w3.o0rg/TR/SVG, September 2001.

8. Object Management Group (ed.): Unified Modeling Language (UML) Specifica-
tion v1.4, Framingham, USA, http://cgi.omg.org/docs/formal/01-09-67.pdf,
September 2001.

9. Boger, M., Jeckle, M., Bjrkander, M., Rivett, P., Emmerich, W., Nentwich, C., and
Baier, T.: Response to the UML 2.0 Diagram Interchange RFP, Object Management
Group, OMG Document ad/2001-02-39, Framingham, USA, 2001.

10. Object Management Group (ed.): XML Metadata Interchange (XMI) Specification
v1.2, Framingham, USA, http://cgi.omg.org/docs/formal/02-01-01.pdf, Jan-
uary 2002.

11. Bray, T., Paoli, J., Sperberg-McQueen, C. M., and Maler, E (eds.):
Extensible Markup Language (XML) 1.0 (Second Edition), Boston, USA,
http://www.w3.org/TR/2000/REC-xml-20001006, October 2000.

12. Clark, J. (ed.): XSL Transformations (XSLT) v1.0, Boston, USA,
http://www.w3.org/TR/xslt, November 1999.



		mario@jeckle.de
	2004-04-06T13:50:12+0200
	www.jeckle.de
	Mario Jeckle
	I am the co-author of this document




