
Notation Guide

version 1.0
13 January 1997
ad/97-01-09

nt is
th this

ia the
2800 San Tomas Expressway
Santa Clara, CA 95051-0951
http://www.rational.com

Copyright © 1997 Rational Software Corporation

Photocopying, electronic distribution, or foreign-language translation of this docume
permitted, provided this document is reproduced in its entirety and accompanied wi
entire notice, including the following statement:

The most recent updates on the Unified Modeling Language are available v
worldwide web: http://www.rational.com.
ii UML v 1.0, Notation Guide

Contents

1. Document Overview 1

2. Diagram Organization 3
2.1 Graphs and their Contents 3
2.2 Drawing paths 4
2.3 Invisible Hyperlinks And The Role Of Tools 4
2.4 Background information 4
2.5 Note 5
2.6 Constraint 6
2.7 Packages and Model Organization 7

3. Generic Notation 10
3.1 Type-Instance Correspondence 10
3.2 String 10
3.3 Name 11
3.4 Label 12
3.5 Property String 13
3.6 Type Expression 15
3.7 Stereotypes 16

4. Static Structure Diagrams 18
4.1 Class diagram 18
4.2 Object diagram 18
4.3 Class 19
4.4 Name Compartment 21
4.5 List Compartment 22
4.6 Type 24
4.7 Interfaces 25
4.8 Parameterized Class (Template) 26
4.9 Bound Element 27
4.10 Utility 28
4.11 Metaclass 29
4.12 Class Pathnames 30
4.13 Importing a package 30
4.14 Attribute 31
4.15 Operation 34
4.16 Association 36
4.17 Binary Association 36
4.18 Association Role 38
4.19 Multiplicity 41
4.20 Qualifier 42
UML v 1.0, Notation Guide iii

Contents
4.21 Association Class 44
4.22 N-ary association 45
4.23 Composition 47
4.24 Generalization 51
4.25 Dependency 55
4.26 Refinement Relationship 57
4.27 Derived Element 59
4.28 Navigation Expression 60

5. Use Case Diagrams 62
5.1 Use Case Diagram 62
5.2 Use Case 63
5.3 Actor 63
5.4 Use case relationships 63

6. Sequence Diagrams 66
6.1 Sequence diagram 66
6.2 Object lifeline 69
6.3 Activation 69
6.4 Message 70
6.5 Transition Times 71

7. Collaboration Diagrams 73
7.1 Collaboration 73
7.2 Design Pattern 74
7.3 Context 75
7.4 Interactions 77
7.5 Collaboration diagram 78
7.6 Object 79
7.7 Composite object 81
7.8 Active object 82
7.9 Links 83
7.10 Message flows 85
7.11 Creation/destruction markers 88

8. State Diagram 89
8.1 State Diagram 89
8.2 States 90
8.3 Substates 91
8.4 Events 94
8.5 Simple transitions 96
8.6 Complex transitions 97
8.7 Transitions to nested states 98
8.8 Sending messages 101
8.9 Internal transitions 104
iv UML v 1.0, Notation Guide

Contents
9. Activity Diagram 106
9.1 Activity diagram 106
9.2 Action state 108
9.3 Decisions 109
9.4 Swimlanes 109
9.5 Action-Object Flow Relationships 111
9.6 Optional Stereotypes 112

10. Implementation Diagrams 114
10.1 Component diagrams 114
10.2 Deployment diagrams 115
10.3 Nodes 117
10.4 Components 118
10.5 Location of Components and objects within objects 119

Index 121
UML v 1.0, Notation Guide v

Contents
vi UML v 1.0, Notation Guide

Document Overview

eling

tics of

agram
. Note,
pt has

e docu-
places
nlinear:
can be

model
in other
ection

n of

a-
wing
 tool.
e do
 nota-
alize
hope
te all
se the
guate
s and
s pre-

ming
nota-
inden-
ges-
1. DOCUMENT OVERVIEW

This document describes the notation for the visual representation of the Unified Mod
Language (UML). This document should be used in conjunction with the companion UML
Semantics document. This notation document contains brief summaries of the seman
UML constructs, but the semantics document must be consulted for full details.

This document is arranged into chapters according to diagram types. Within each di
type are listed model elements that are found on that diagram and their representation
however, that many model elements are usable in more than one diagram. An attem
been made to place each description where it is used the most, but be aware that th
ment involves implicit cross-references and that elements may be useful in other
than the chapter in which they are described. Be aware also that the document is no
there are forward references in it. It is not intended to be a teaching document that
read linearly but a reference document organized by affinity of concept.

Each chapter is divided into numbered sections, roughly corresponding to important
elements and notational constructs. Note that some of these constructs are used with
constructs; do not be misled by the flattened structure of the chapter. Within each s
the following subsections may be found:

Semantics: Brief summary of semantics. For a fuller explanation and discussio
fine points see the UML Semantics document.

Notation: Explains the notational elements of the feature.

Presentation options: Describes various options in presenting the model inform
tion, such as the ability to suppress or filter information, alternate ways of sho
things, and suggestions for alternate ways of presenting information within a
Dynamic tools need the freedom to present information in various ways and w
not want to restrict this excessively. In some sense, we are defining the “paper
tion” that printed documents show, rather than the “screen notation”. We re
that the ability to extend the notation can lead to unintelligible dialects so we
that this freedom will be used in intuitive ways. We have not sought to elimina
the ambiguity that some of these presentation options may introduce, becau
presence of the underlying model in a dynamic tool serves to easily disambi
things. Note that a tool is not supposed to pick one of the presentation option
implement it; tools should give the users the options of selecting among variou
sentation options, including some that are not described in this document.

Style guidelines: Suggestions for the use of stylistic markers, such as fonts, na
conventions, arrangement of symbols, etc., that are not explicitly part of the
tion but that help to make diagrams more readable. These are similar to text
tation rules in C++ or Smalltalk. Not everyone will choose to follow these sug
UML v 1.0, Notation Guide 1

Document Overview

com-
tions, but the use of some consistent guidelines of your own choosing is re
mended in any case.
2 UML v 1.0, Notation Guide

Diagram Organization

tion is
excep-
f topo-
ntain-
l being

rojec-
nsional

ble on

icons,

tents.
ymbols

 hold
 com-
ols by
mbol

 a path is
 seg-

ymbols

bol.

 that
erlying
transi-
gs may
ists (in
ols or
2. DIAGRAM ORGANIZATION

2.1 GRAPHS AND THEIR CONTENTS

Most UML diagrams are graphs containing nodes connected by paths. The informa
mostly in the topology, not in the size or placement of the symbols (there are some
tions, such as a sequence diagram with a metric time axis). There are three kinds o
logical relationships that are important: connection (usually of lines to 2-d shapes), co
ment (of symbols by 2-d shapes with boundaries), and visual attachment (one symbo
“near” another one on a diagram).

Note that UML notation is basic 2-dimensional. Some shapes are 2-dimensional p
tions of 3-d shapes (such as cubes) but they are still rendered as icons on a 2-dime
surface. In the near future true 3-dimensional layout and navigation may be possi
desktop machines but it is not currently practical.

There are basically four kinds of graphical constructs that are used in UML notation:
2-d symbols, paths, and strings.

An icon is a graphical figure of a fixed size and shape; it does not expand to hold con
Icons may appear within area symbols, as terminators on paths, or as stand-alone s
that may or may not be connected to paths.

Two-dimensional symbols have variable height and width and they can expand to
other things, such as lists of strings or other symbols. Many of them are divided into
partments of similar or different kinds. Paths are connected to two-dimensional symb
terminating the path on the boundary of the symbol. Dragging or deleting a 2-d sy
affects its contents and any paths connected to it.

Paths are sequences of line segments whose endpoints are attached. Conceptually
a single topological entity, although its segments may be manipulated graphically. A
ment may not exist apart from its path. Paths are always attached to other graphic s
at both ends (no dangling lines). Paths may have terminators, that is, icons that appear in
some sequence on the end of the path and that qualify the meaning of the path sym

Strings present various kinds of information in an “unparsed” form. UML assumes
each usage of a string in the notation has a syntax by which it can be parsed into und
model information. For example, syntaxes are given for attributes, operations, and
tions. These syntaxes are subject to extension by tools as a presentation option. Strin
exist as singular elements of symbols or compartments of symbols, as elements in l
which case the position in the list conveys information), as labels attached to symb
paths, or as stand-alone elements on a diagram.
UML v 1.0, Notation Guide 3

Diagram Organization

th is a
e style
a tool
now
lly be
 do not

e same
ticular
le line
e. This
tinct.
ments

puter
t in a
ation,
rt of a
their

ation
nough
new
come
o now.

y have
ributes
ay pro-
 style
2.2 DRAWING PATHS

Path consist of a series of line segments whose endpoints coincide. The entire pa
single topological unit. Line segments may be drawn at any angle (oblique lines). On
option is to restrict all lines to fall on a rectilinear grid, but this can be regarded as
restriction on default line input. When line segments cross, it may be difficult to k
which visual piece goes with which other piece; therefore a crossing may optiona
shown with a small semicircular jog by one of the segments to indicate that the paths
intersect or connect (as in an electrical circuit diagram).

In some relationships (such as aggregation and generalization) several paths of th
kind may connect to a single symbol. In some circumstances (described for the par
relationship) the line segments connected to the symbol can be combined into a sing
segment, so that the path from that symbol branches into several paths in a kind of tre
is purely a graphical presentation option; conceptually the individual paths are dis
This presentation option may not be used when the modeling information on the seg
to be combined is not identical.

2.3 INVISIBLE HYPERLINKS AND THE ROLE OF TOOLS

A notation on a piece of paper contains no hidden information. A notation on a com
screen, however, may contain additional invisible hyperlinks that are not apparen
static view, but that can be invoked dynamically to access some other piece of inform
either in a graphical view or in a textual table. Such dynamic links are as much a pa
dynamic notation as the visible information, but this document does not prescribe
form. We regard them as a tool responsibility. This document attempts to define astatic
notation for the UML, with the understanding that some useful and interesting inform
may show up poorly or not at all in such a view. On the other hand, we do not know e
to specify the behavior of all dynamic tools, nor do we want to stifle innovation in
forms of dynamic presentation. Eventually some of the dynamic notations may be
well enough established to standardize them, but we do not feel that we should do s

2.4 BACKGROUND INFORMATION

2.4.1 Presentation options

Each appearance of a symbol for a class on a diagram or on different diagrams ma
its own presentation choices. For example, one symbol for a class may show the att
and operations and another symbol for the same class may suppress them. Tools m
vide style sheets attached either to individual symbols or to entire diagrams. The
4 UML v 1.0, Notation Guide

Diagram Organization

o most

ome
d pro-
t all of
ilable

r of the
uately

ation
hical

an to a

tains
e mod-

s the
st part
 kinds
sheets would specify the presentation choices. (Style sheets would be applicable t
kinds of symbols, not just classes.)

Not all modeling information is most usefully presented in a graphical notation. S
information is best presented in a textual or tabular format. For example, much detaile
gramming information is best presented as text lists. The UML does not assume tha
the information in a model will be expressed as diagrams; some of it may only be ava
as tables. This document does not attempt to prescribe the format of such tables o
forms that are used to access them, because the underlying information is adeq
described in the UML metamodel and the responsibility for presenting tabular inform
is a tool responsibility. It is assumed, however, that hidden links may exist from grap
items to tabular items.

2.5 NOTE

A note is a comment placed on the diagram. It is attached to the diagram rather th
model element, unless it is stereotyped to be a constraint.

2.5.1 Notation

A note is shown as a rectangle with a “bent corner” in the upper right corner. It con
arbitrary text. It appears on a particular diagrams and may be attached to zero or mor
eling elements by dashed lines.

2.5.2 Presentation options

A note may have a stereotype.

A note with the stereotype “constraint” or a more specific form of constraint (such a
code body for a method) designates a constraint that is part of the model and not ju
of a diagram view. Such a note is the view of a model element (the constraint). Other
of notes are purely notation; they have no underlying model element.
UML v 1.0, Notation Guide 5

Diagram Organization

ns and
 model
 con-
 user-
tion is
el ele-

uage
tools
rwise

straint

ithin a
s to all
 of the
al con-

t string
2.5.3 Example

See also Section 2.6.2 for a note symbol containing a constraint.

Figure 1. Note

2.6 CONSTRAINT

A constraint is a semantic relationship among model elements that specifies conditio
propositions that must be maintained as true (otherwise the system described by the
is invalid, with consequences that are outside the scope of UML). Certain kinds of
straints (such as an association “or” constraint) are predefined in UML, others may be
defined. A user-defined constraint is described in words whose syntax and interpreta
a tool responsibility. A constraint represents semantic information attached to a mod
ment, not just to a view of it.

2.6.1 Notation

A constraint is shown as a text string in braces ({ }). UML does not prescribe the lang
in which the constraint is written. However, there is an expectation that individual
may provide one or more languages in which formal constraints may be written. Othe
the constraint may be written in natural language.

For an element whose notation is a text string (such as an attribute, etc.): The con
string may follow the element text string.

For a list of elements whose notation is a list of text strings (such as the attributes w
class): A constraint string may appear as an element in the list. The constraint applie
succeeding elements of the list until another constraint string list element or the end
list. A constraint attached to an individual list element does not supersede the gener
straint but may augment or modify individual constraints within the constraint string.

For a single graphical symbol (such as a class or an association path): The constrain
may be placed near the symbol, preferably near the name of the symbol, if any.

This model was built
by Alan Wright after
meeting with the
mission planning team.
6 UML v 1.0, Notation Guide

Diagram Organization

aint is
nstraint
aint.

ol and
 for the
 or asso-
hs.

 within
del ele-
rything
ages.
For two graphical symbols (such as two classes or two associations): The constr
shown as a dashed arrow from one element to the other element labeled by the co
string (in braces). The direction of the arrow is relevant information within the constr

For three or more graphical symbols: The constraint string is placed in a note symb
attached to each of the symbols by a dashed line. This notation may also be used
other cases. For three or more paths of the same kind (such as generalization paths
ciation paths) the constraint may be attached to a dashed line crossing all of the pat

2.6.2 Example

Figure 2. Constraints

2.7 PACKAGES AND MODEL ORGANIZATION

A package is a grouping of model elements. Packages themselves may be nested
other packages. A package may contain both subordinate packages and ordinary mo
ments. The entire system can be thought of as a single high-level package with eve
else in it. All kinds of UML model elements and diagrams can be organized into pack

Member-of

Chair-of

{subset}Person Committee

Person Company

boss

{Person.employer =
Person.boss.employer}

employerworker employee

0..1

∗ ∗

∗

∗

∗ 0..1

1

UML v 1.0, Notation Guide 7

Diagram Organization

on one
folder

thin the

 within

ames,
.

2.7.1 Notation

A package is shown as a large rectangle with a small rectangle (a “tab”) attached
corner (preferably the left side of the upper side of the large rectangle). It is a manila
icon.

If contents of the package are not shown, then the name of the package is placed wi
large rectangle.

If contents of the package are shown, then the name of the package may be placed
the tab.

A stereotype string may be placed above the package name.

The contents of the package may be shown within the large rectangle.

2.7.2 Style guidelines

It is expected that packages with large contents will be shown as simple icons with n
in which the contents may be dynamically accessed by “zooming” to a detailed view
8 UML v 1.0, Notation Guide

Diagram Organization
2.7.3 Example

Figure 3. Packages and their dependencies

Controller

Diagram
Elements

Windowing
System

Domain
Elements

Graphics
Core

Editor

Microsoft
Windows

Motif

WindowsCore

MotifCore
UML v 1.0, Notation Guide 9

Generic Notation

y spe-

ocu-
ually
criptor
irs in
d so

ly the
r each
sually
 disad-
omet-
 type
parent
ts.

user’s

forma-
ters.

ation
sumes
n var-
cient.
rectly,
3. GENERIC NOTATION

This section describes notation features that apply widely to other notation features.

3.1 TYPE-INSTANCE CORRESPONDENCE

The main purpose of modeling is to prepare generic descriptions that describe man
cific particular items. This is often known as the type-instance dichotomy. (In this section
the words type and instance are used in a somewhat broader way than the rest of the d
ment.) Many or most of the modeling concepts in UML have this dual character, us
modeled by two paired modeling elements, one of which represents the generic des
and the other of which the individual items that it describes. Examples of such pa
UML include: Class-Object, Association-Link, Parameter-Value, Operation-Call, an
on.

Although diagrams for type-like elements and instance-like elements are not exact
same, they share many similarities. Therefore it is convenient to choose notation fo
type-instance pair of elements such that the correspondence is immediately vi
apparent. There are a limited number of ways to do this, each with advantages and
vantages. In UML the type-instance distinction is shown by employing the same ge
rical symbol for each pair of elements and by underlining the name string (including
name, if present) of an instance element. This visual distinction is generally easily ap
without being overpowering even when an entire diagram contains instance elemen

A tool is free to substitute a different graphic marker for instance elements at the
option, such as color, fill patterns, or so on.

3.2 STRING

A string is a sequence of characters in some suitable character set used to display in
tion about the model. Character sets may include non-Roman alphabets and charac

3.2.1 Semantics

Diagram strings normally map underlying model strings that store or encode inform
about the model, although some strings may exist purely on the diagrams. UML as
that the underlying character set is sufficient for representing multibyte characters i
ious human languages; in particular, the traditional 8-bit ASCII character set is insuffi
It is assumed that the tool and the computer manipulate and store strings cor
10 UML v 1.0, Notation Guide

Generic Notation

e that

e dis-
epen-
 para-

 string
in this

omatic
 string

name
 other
including escape conventions for special characters, and this document will assum
arbitrary strings can be used without further fuss.

3.2.2 Notation

A string is displayed as a text string graphic. Normal printable characters should b
played directly. The display of nonprintable characters is unspecified and platform-d
dent. Depending on purpose, a string might be shown as a single-line entity or as a
graph with automatic line breaks.

Typeface and font size are graphic markers that are normally independent of the
itself. They may code for various model properties, some of which are suggested
document and some of which are left open for the tool or the user.

3.2.3 Presentation options

Tools may present long strings in various ways, such as truncation to a fixed size, aut
wrapping, or insertion of scroll bars. It is assumed that there is a way to obtain the full
dynamically.

3.2.4 Example

BankAccount

integrate (f: Function, from: Real, to: Real)

{ author = “Joe Smith”, deadline = 31-March-1997, status = analysis }

The purpose of the shuffle operation is nominally to put the cards into a random
configuration. However, to more closely capture the behavior of physical
decks, in which blocks of cards may stick together during several riffles,
the operation is actually simulated by cutting the deck and merging the
cards with an imperfect merge.

3.3 NAME

3.3.1 Semantics

A name is a string that is used to identify a model element within some scope. A path
is used to find a model element starting from the root of the system (or from some
UML v 1.0, Notation Guide 11

Generic Notation

in this

e var-
ith its

le line
onable
 more

or by
sition
 “near”
nd a
point). A name is a selector (qualifier) within some scope—the scope is made clear
document for each element that can be named.

Pathname. A pathname is a series of names linked together by a delimiter. There ar
ious kinds of pathnames described in this document, each in its proper place and w
particular delimiter.

3.3.2 Notation

A name is displayed as a text string graphic. Normally a name is displayed on a sing
and will not contain nonprintable characters. Tools and languages may impose reas
limits on the length of strings and the character set they use for names, possibly
restrictive than those for arbitrary strings such as comments.

3.3.3 Example

Names:

BankAccount

integrate

controller

abstract

this_is_a_very_long_name_with_underscores

Pathname:

MathPak::Matrices::BandedMatrix.dimension

3.4 LABEL

A label is a string that is attached to a graphic symbol.

3.4.1 Notation

Visually the attachment is normally by containment of the string (in a closed region)
placing the string near the symbol. Sometimes the string is placed in a definite po
(such as below a symbol) but most of the time the statement is that the string must be
the symbol. A tool can maintain an explicit internal graphic linking between a label a
12 UML v 1.0, Notation Guide

Generic Notation

e dia-
nfusion

ment.
odel

ment,
clude

ment
alled a
ds of
s are an
els.
ing,

e UML
, report
graphic symbol, so that the label drags with the symbol, but the final appearance of th
gram is a matter of aesthetic judgment and should be made so that there is no co
about which symbol a label is attached to.

3.4.2 Example

Figure 4. Attachment by containment and attachment by adjacency

3.5 PROPERTY STRING

A property string is a string used to display properties attached to some model ele
This is a term for a notation syntax format that may be used for various kinds of m
properties (not just tagged values).

3.5.1 Semantics

Note that we use property in a general sense to mean any value attached to a model ele
including built-in attributes, associations, and tagged values. In this sense it can in
indirectly reachable values that can be found starting at a given element.

A tagged value is a keyword-value pair that may be attached to any kind of model ele
(including diagram elements as well as semantic model elements). The keyword is c
tag. Each tag represents a particular kind of property applicable to one or many kin
model elements. Both the tag and the value are encoded as strings. Tagged value
extensibility mechanism of UML permitting arbitrary information to be attached to mod
It is expected that most model editors will provide basic facilities for defining, display
and searching tagged values as strings but will not otherwise use them to extend th
semantics. It is expected, however, that back-end tools such as code generators
writers, and the like will read tagged values to alter their semantics in flexible ways.

BankAccount

account
UML v 1.0, Notation Guide 13

Generic Notation

s

e you
 dis-
is not

alues.

sing
ation.
inctive

operty
distin-
 in the
3.5.2 Notation

A property string is displayed as a comma-delimited sequence of property specifications
all inside a pair of braces ({ }).

A property specification has the form

keyword = value

where keyword is the name of a property and value is an arbitrary string that denotes it
value. If the property is a Boolean flag, then the default value is true if the value is omitted.
(That is, to specify a value of true you include the keyword; to specify a value of fals
omit it completely.) Properties of other types require explicit values. The syntax for
playing the value is a tool responsibility in cases where the underlying model value
a string or a number.

Note that property strings may be used to display built-in attributes as well as tagged v

3.5.3 Presentation options

A tool may present property specifications one per line with or without the enclo
braces, provided they are appropriately marked to distinguish them from other inform
For example, properties for a class might be listed under the class name in a dist
typeface, such as italics or a different font family.

For a text item that is presented as a string parsable into various fields, certain pr
values may be included in the string provided an appropriate syntax is defined to
guish them. For example, certain language-dependent properties might be included
string presenting an attribute.

3.5.4 Example

{ author = “Joe Smith”, deadline = 31-March-1997, status = analysis }

{ abstract }
14 UML v 1.0, Notation Guide

Generic Notation

ns for
be com-
posed

es have

t
of
 struc-

so lan-
-
actual
 type
e type
 from
 least,
ss, and
types
ecifi-

es,
g lan-

ty of a
 some
ever,

may pro-
press
3.6 TYPE EXPRESSION

3.6.1 Semantics

Programming languages have a variety of rules for constructing type expressio
declaring variables and parameters. Some languages (such as C++) permit types to
posed into complex expressions without names; others (such as Ada) require com
types to be name before they can be used in declarations. Programming languag
both predefined and user-defined types. UML uses the word type in a more general way,
roughly corresponding to the concept of abstract data type in computer science. In mos
programming languages the word type corresponds most closely to the UML concept
class, as the programming-language types include both data structure and operation
ture.

UML avoids specifying the rules for constructing type expressions because they are
guage-dependent. Rather, UML assumes that type expression strings will appear in the dec
larations of attributes, variables, and parameters, but UML leaves undefined the
syntax of the type expressions. It is the responsibility of a tool to verify and parse
expressions (if desired, otherwise they can be left as strings). Programming-languag
definitions do not explicitly occur in the UML, but type expressions can be generated
UML types and classes (and code generation is a major use of models). At the very
UML assumes that there is a type expressions corresponding to a single type or cla
that each type expression contains within it references to one or more UML
(including primitive types). Programming-language type expressions appear in the sp
cation of UML attributes and parameters. These appear in the UML as class TypeExpres-
sion, whose detailed form is unspecified and programming-language-dependent UMLdoes
assume that a TypeExpression contains embedded within it references to actual UML typ
but the exact mapping is highly dependent on the syntax of a particular programmin
guage and the UML definition does not attempt to impose a single mapping.

3.6.2 Notation

A type expression is displayed as a string; the syntax of the string is the responsibili
tool, possibly by reference to an appropriate programming language, possibly with
encoding into fields; the UML does not prescribe the language. At the very least, how
a reference to a class corresponds to a type expression. Some languages, however,
vide a more complicated syntax for implementation types that may be difficult to ex
simply as class references.
UML v 1.0, Notation Guide 15

Generic Notation

deling
 based
y in cer-

 such a
bably

 within
other
racket
ed as a
laced
 string
lements
 it.

or a
 UML
rmats
ays:
of the
 a class

, the
symbol
ve or
3.6.3 Example

BankAccount

BankAccount * (*) (Person*, int)

array [1..20] of reference to range (-1.0..1.0) of Real

3.7 STEREOTYPES

3.7.1 Semantics

A stereotype is, in effect, a new class of modeling element that is introduced at mo
time within a model. There are certain restrictions on what they can be: they must be
on certain existing classes in the metamodel and they may extend those classes onl
tain predefined ways. They represent a built-in extensibility mechanism of UML.

Stereotypes themselves may have a classification hierarchy. Because the root of
hierarchy is a metamodel class in the UML metamodel, such classifications are pro
best left for experts with a detailed knowledge of UML.

3.7.2 Notation

The general presentation of a stereotype is to place the name of the stereotype
matched guillemets, which are the quotation mark symbols used in French and certain
languages, as for example: «foo». (Note that a guillemet looks like a double angle-b
but it is a single character in most extended fonts. Double angle-brackets may be us
substitute by the typographically challenged.) The stereotype string is generally p
above or in front of the name of the model element being described. The stereotype
may also be used as an element in a list, in which case it applies to subsequent list e
until another stereotype string replaces it, or an empty stereotype string («») nullifies

To permit limited graphical extension of the UML notation as well, a graphic icon
graphic marker (such as texture or color) can be associated with a stereotype. The
does not specify the form of the graphic specification, but many bitmap and stroked fo
exist (and their portability is a difficult problem). The icon can be used in one of two w
it may be used instead of or in addition to the stereotype keyword string as part
symbol for the base model element that the stereotype is based on; for example, in
rectangle it is placed in the upper right corner of the name compartment. In this form
normal contents of the item can be seen. Alternately, the entire base model element
may be “collapsed” into an icon containing the element name or with the name abo
16 UML v 1.0, Notation Guide

Generic Notation

 sup-
ut we

exten-

certain
piers,
uch as
and

ss dia-
erential
ause of
expose
below the icon. Other information contained by the base model element symbol is
pressed. More general forms of icon specification and substitution are conceivable b
leave these to the ingenuity of tool builders, with the warning that excessive use of
sibility capabilities may lead to loss of portability among tools.

UML avoids the use of graphic markers, such as color, that present challenges for
persons (the color blind) and for important kinds of equipment (such as printers, co
and fax machines). Users may use graphic markers freely in their personal work (s
for highlighting within a tool) but should be aware of their limitations for interchange
be prepared to use the canonical forms when necessary.

The classification hierarchy of the stereotypes themselves can be displayed on a cla
gram. Each stereotype is a stereotype «stereotype» of a class (yes, this is a self-ref
usage!). Generalization relationships show the extended metamodel hierarchy. Bec
the danger of extending the internal metamodel hierarchy, a tool may, but need not,
this capability on class diagrams.

3.7.3 Example

Figure 5. Varieties of stereotype notation

PenTracker
«control»

PenTracker

«control»

PenTracker

PenTracker

JobManager Scheduler
«calls»

location: Point

enable (Mode)

location: Point

enable (Mode)

location: Point

enable (Mode)
UML v 1.0, Notation Guide 17

Static Structure Diagrams

t exist
 things.
ified

ct dia-

tiated
ncludes
 unit of

rface.
d even
ral dia-

, types,
ass dia-
parate

a class
namic

ing the
on dia-

agrams
gram.”
s is an
chiev-
4. STATIC STRUCTURE DIAGRAMS

Class diagrams show the static structure of the model, in particular, the things tha
(such as classes and types), their internal structure, and their relationships to other
Class diagrams do not show temporal information, although they may contain re
occurrences of things that have or things that describe temporal behavior. An obje
gram shows instances compatible with a particular class diagram.

This chapter includes classes and their variations, including templates and instan
classes, and the relationships between classes: association and generalization. It i
the contents of classes: attributes and operations. It also includes the organizational
class diagrams: packages.

4.1 CLASS DIAGRAM

A class diagram is a graph of modeling elements shown on a two-dimensional su
(Note that a “class” diagram may also contain types, packages, relationships, an
instances, such as objects and links. Perhaps a better name would be “static structu
gram” but “class diagram” sounds better.)

4.1.1 Notation

A class diagram is a collection of (static) declarative model elements, such as classes
and their relationships, connected as a graph to each other and to their contents. Cl
grams may be organized into packages either with their underlying models or as se
packages that build upon the underlying model packages.

4.2 OBJECT DIAGRAM

An object diagram is a graph of instances. A static object diagram is an instance of
diagram; it shows a snapshot of the detailed state of a system at a point in time. A dy
object diagram shows the detailed state of a system over some period of time, includ
changes that occur over time; dynamic object diagrams are manifested as collaborati
grams.

There is no need for tools to support a separate format for object diagrams. Class di
can contain objects, so a class diagram with objects and no classes is an “object dia
Collaboration diagrams contain objects, so a collaboration diagram with no message
“object diagram.” The phrase is useful, however, to characterize a particular usage a
able in various ways.
18 UML v 1.0, Notation Guide

Static Structure Diagrams

ation-
s well
classes
ses are
phical

classes

e must

izontal
s of the
; the

n that
x

aining

parator
rence

ned or
 varia-
 com-

a tool
4.3 CLASS

A class is the descriptor for a set of objects with similar structure, behavior, and rel
ships. UML provides notation for declaring classes and specifying their properties, a
as using classes in various ways. Some modeling elements that are similar in form to
(such as types, signals, or utilities) are notated as stereotypes of classes. Clas
declared in class diagrams and used in most other diagrams. UML provides a gra
notation for declaring and using classes, as well as a textual notation for referencing
within the descriptions of other model elements.

4.3.1 Semantics

The name of a class has scope within the package in which it is declared and the nam
be unique (among class names) within its package.

4.3.2 Basic notation

A class is drawn as a solid-outline rectangle with 3 compartments separated by hor
lines. The top name compartment holds the class name and other general propertie
class (including stereotype); the middle list compartment holds a list of attributes
bottom list compartment holds a list of operations.

References. By default a class shown within a package is assumed to be defined withi
package. To show a reference to a class defined in another package, use the synta

Package-name::Class-name

as the name string in the name compartment. A full pathname can be specified by ch
together package names separated by double colons (::).

4.3.3 Presentation options

Either or both of the attribute and operation compartments may be suppressed. A se
line is not drawn for a missing compartment. If a compartment is suppressed, no infe
can be drawn about the presence or absence of elements in it.

Additional compartments may be supplied as a tool extension to show other predefi
user-defined model properties, for example, to show business rules, responsibilities,
tions, events handled, and so on. Most compartments are simply lists of strings. More
plicated formats are possible, but UML does not specify such formats; they are
UML v 1.0, Notation Guide 19

Static Structure Diagrams

 on its

 class

 icon,
 of the

mple,
property

 italics.

s or ref-
responsibility. Appearance of each compartment should preferably be implicit based
contents. Tools may provide explicit markers if needed.

Tools may provide other ways to show class references and to distinguish them from
declarations.

A class symbol with a stereotype icon may be “collapsed” to show just the stereotype
with the name of the class either inside the class or below the icon. Other contents
class are suppressed.

4.3.4 Style guidelines

Class name in boldface, centered.

Stereotype name in plain face, within guillemets, centered.

Typically class names begin with an uppercase letter.

Attributes and operations in plain face, left justified.

Typically attribute and operation names begin with a lowercase letter.

As a tool extension, boldface may be used for marking special list elements, for exa
to designate candidate keys in a database design. This might encode some design
modeled as a tagged value, for example.

Strings for the names of abstract classes or the signatures of abstract operations in

Show full attributes and operations when needed and suppress them in other context
erences.
20 UML v 1.0, Notation Guide

Static Structure Diagrams

etails

mets,
t.

s-level
4.3.5 Example

Figure 6. Class notation: details suppressed, analysis-level details, implementation-level d

4.4 NAME COMPARTMENT

4.4.1 Notation

Displays the name of the class and other properties in up to 3 sections:

An optional stereotype keyword may be placed above the class name within guille
and/or a stereotype icon may be placed in the upper right corner of the compartmen

The name of the class appears next. (Style: centered, leading capital, boldface.)

A property list may be placed in braces below the class name. The list may show clas
attributes for which there is no UML notation and it may also show tagged values.

Window

display ()

size: Area
visibility: Boolean

hide ()

Window

Window

+default-size: Rectangle
#maximum-size: Rectangle

+create ()

+display ()

+size: Area = (100,100)
#visibility: Boolean = invisible

+hide ()

-xptr: XWindow*

-attachXWindow(xwin:Xwindow*)

{abstract,
author=Joe,
status=tested}
UML v 1.0, Notation Guide 21

Static Structure Diagrams

uch as
andled
 show
odifi-

rder of
mple,
ments
e. For
 items
rely

on of
n con-
ew of

ase
s a list
s indi-
 usage
o be
The stereotype and property list are optional.

Figure 7. Name compartment

4.5 LIST COMPARTMENT

4.5.1 Notation

Holds a list of strings, each of which is the encoded representation of an element, s
an attribute or operation. The strings are presented one to a line with overflow to be h
in a tool-dependent manner. In addition to lists of attributes or operations, lists can
other kinds of predefined or user-defined values, such as responsibilities, rules, or m
cation histories. The manipulation of user-defined lists is tool-dependent.

The items in the list are ordered and the order may be modified by the user. The o
the elements is meaningful information and must be accessible within tools. For exa
it may be used by a code generator in generating a list of declarations. The list ele
may be presented in a different order, however, to achieve some other purpos
example, they may be sorted in some way. Even if the list is sorted, however, the
maintain their original order in the underlying model; the ordering information is me
suppressed in the view.

An ellipsis (. . .) as the final element of a list or the final element of a delimited secti
a list indicates that there exist additional elements in the model that meet the selectio
dition but that are not shown in that list. Such elements may appear in a different vi
the list.

Group properties: A property string may be shown as a element of the list, in which c
it applies to all of the succeeding list elements until another property string appears a
element. This is equivalent to attaching the property string to each of the list element
vidually. The property string does not designate a model element. Examples of this
include indicating a stereotype and specifying visibility. Stereotype strings may als
used in a similar way to qualify subsequent list elements.

PenTracker

«controller»

{ abstract }
22 UML v 1.0, Notation Guide

Static Structure Diagrams

dering
t indi-
ering

by visi-

cation
cates
esence
 avail-
w to
gram

absence
n filter
4.5.2 Presentation options

A tool may present the list elements in a sorted order, in which case the inherent or
of the elements is not visible. A sort is based on some internal property and does no
cate additional model information. Example sort rules include alphabetical order, ord
by stereotype (such as constructors, destructors, then ordinary methods), ordering
bility (public, then protected, then private), etc.

The elements in the list may be filtered according to some selection rule. The specifi
of selection rules is a tool responsibility. The absence of items from a filtered list indi
that no elements meet the filter criterion, but no inference can be drawn about the pr
or absence of elements that do not meet the criterion (however, the ellipsis notation is
able to show that invisible elements exist). It is a tool responsibility whether and ho
indicate the presence of either local or global filtering, although a stand-alone dia
should have some indication of such filtering if it is to be understandable.

If a compartment is suppressed, no inference can be drawn about the presence or
of its elements. An empty compartment indicates that no elements meet the selectio
(if any).

Note that attributes may also be shown by composition (see Figure 20).

4.5.3 Example

Figure 8. Stereotype keyword applied to groups of list elements

«constructor»
Rectangle(p1:Point, p2:Point)
«query»
area (): Real
aspect (): Real

«update»
move (delta: Point)
scale (ratio: Real)
. . .

. . .

Rectangle

p1:Point
p2:Point
UML v 1.0, Notation Guide 23

Static Structure Diagrams

cifica-
ncrete

s pro-
s that

lemen-
-
enting
tation
 effects
igna-
ations.
stract

ation.
y.

such as

 opera-
 a
4.6 TYPE

A type is descriptor for objects with abstract state, concrete external operation spe
tions, and no operation implementations. A class is a descriptor for objects with co
state and concrete operation implementation.

Classes implement types. A type provides a specification of external behavior. A clas
vides an implementation data structure and a procedural implementation of method
together implement the specified behavior.

4.6.1 Semantics

A type may contain attributes and operations, but neither of them represents an imp
tation commitment. Attributes in a type define the abstract state of the type. These repre
sent the state information supported by objects of the type, but an actual class implem
the type may represent the information in a different way, as long as the represen
maps to the abstract attributes of the type. Type attributes can be used to define the
of type operations. A type may contain specifications for operations, including their s
tures and a description of their effects, but the operations do not contain implement
The effect of an operation is defined in terms of the changes it makes to the ab
attributes of the type.

It is sometimes helpful to describe abstract properties that represent structured inform
For example, a type might contain a PriceList attribute that maps product names to mone
The types of these attributes can be treated as mathematical functional mappings,
ProductName→Money.

A type establishes a behavioral specification for classes. A class that supports the
tions defined by a type is said to implement the type; this relationship can be shown as
form of refinement relationship from the class to the type that it implements.

4.6.2 Notation

A type shown as a stereotype of a class symbol with the stereotype «type».

A type may contain lists of abstract attributes and of operations.

A type may contain a context and specifications of its operations accordingly.
24 UML v 1.0, Notation Guide

Static Structure Diagrams

, com-

tation
 opera-
ckages
ovides
ed are
pera-
rcle by
t least
quired

part-
4.7 INTERFACES

An interface is the use of a type to describe the externally-visible behavior of a class
ponent, or other entity (including summarization units such as packages).

4.7.1 Notation

An interface may be displayed using a small circle with the name of the type. This no
stresses the operations provided by the type. An interface may supply one or more
tions. The circle may be attached to classes (or higher-level containers, such as pa
that contain the classes) that support it by a solid line. This indicates that the class pr
all of the operations in the interface type (and possibly more). The operations provid
not shown on the circle notation; use the full rectangle symbol to show the list of o
tions. A class that requires the operations in the interface may be attached to the ci
a dashed arrow. The dashed arrow indicates a sufficiency test: if the type provides a
these operations then a class that realizes it will work. The dependent class is not re
to actually use all of the operations.

An interface is a type and may also be shown using the full rectangle symbol with com
ments. The circle form may be regarded as a shorthand notation.

4.7.2 Example

Figure 9. Interface notation on class diagram

HashTable

Hashable

Comparable

String
. . .

isEqual(String):Boolean
hash():Integer

contents*
UML v 1.0, Notation Guide 25

Static Structure Diagrams

ers. It
ters to
present
ate are
mplate

 bound
ociation
bclass
 of the

ctangle
 for the
e sup-
ed class
formal
t for the

-
e
n

4.8 PARAMETERIZED CLASS (TEMPLATE)

4.8.1 Semantics

A template is the descriptor for a class with one or more unbound formal paramet
therefore defines a family of classes, each class specified by binding the parame
actual values. Typically the parameters represent attribute types, but they can also re
integers, other types, or even operations. Attributes and operations within the templ
defined in terms of the formal parameters so they too become bound when the te
itself is bound to actual values.

A template is not a class. Its parameters must be bound to actual values to create a
form that is a class. Only a class can be subclassed or associated to (a one-way ass
from the template to another class is permissible, however). A template may be a su
of an ordinary class; this implies that all classes formed by binding it are subclasses
given superclass.

4.8.2 Notation

A small dashed rectangle is superimposed on the upper right-hand corner of the re
for the class. The dashed rectangle contains an parameter list of formal parameters
class and their implementation types. The list must not be empty, although it might b
pressed in the presentation. The name, attributes, and operations of the parameteriz
appear as normal in the class rectangle, but they may include occurrences of the
parameters. Occurrences of the formal parameters can also occur inside of a contex
class, for example, to show a related class identified by one of the parameters

4.8.3 Presentation options

The parameter list may be comma-separated or it may be one per line.

Parameters are restricted attributes, with the syntax

name : type

where name is an identifier for the parameter with scope inside the template;

where type is a string designating a TypeExpression for the parameter.

The default type of a parameter is TypeExpression (or class as it is somewhat confus
ingly declared in C++, even though they allow int’s and other non-classes). If the type nam
is omitted, it is assumed to be TypeExpression (that is, the argument itself must be a
26 UML v 1.0, Notation Guide

Static Structure Diagrams

ion or
pe that

. If the
ate can
es in the
tside of
implementation type, such as a class name). Other parameter types (such as Integer) should
be explicitly shown.

4.8.4 Example

Figure 10. Template notation with use of parameter as a reference

4.9 BOUND ELEMENT

4.9.1 Semantics

A template cannot be used directly in an ordinary relationship such as generalizat
association, because it has a free parameter that is not meaningful outside of a sco
declares the parameter. To be used, a template’s parameters must be bound to actual values.
The actual value for each parameter is an expression defined within the scope of use
referencing scope is itself a template, then the parameters of the referencing templ
be used as actual values in binding the referenced template, but the parameter nam
two templates cannot be assumed to correspond, because they have no scope ou
their respective templates.

FArray

FArray<Point,3>

T,k:Integer

«bind» <Address,24>

T
k..k

AddressList
UML v 1.0, Notation Guide 27

Static Structure Diagrams

llows:

mplate

eterized
symbol

y not
ed, for
ual way.

shown
on the
plate.

 class,

ation.
s and
 as a
4.9.2 Notation

A bound element is indicated by a text syntax in the name string of an element, as fo

Template-name ‘<‘ value-list ‘>’

where value-list is a comma-delimited non-empty list of value expressions;

where Template-name is identical to the name of a template.

For example, VArray<Point,3> designates a class described by the template Varray.

The number and types of the values must match the number and types of the te
parameters for the template of the given name.

The bound element name may be used anywhere that an element name of the param
kind could be used. For example, a bound class name could be used within a class
on a class diagram, as an attribute type, or as part of an operation signature.

Note that a bound element is fully specified by its template, therefore its content ma
be extended; declaration of new attributes or operations for classes is not permitt
example, but a bound class could be subclassed and the subclass extended in the us

The relationship between the bound element and its template may alternatively be
by a refinement relationship with the stereotype «bind». The arguments are shown
relationship. In this case the bound form may be given a name distinct from the tem

4.9.3 Style guidelines

The attribute and operation compartments are normally suppressed within a bound
because they must not be modified in a bound template.

4.9.4 Example

See Figure 10.

4.10 UTILITY

A utility is a grouping of global variables and procedures in the form of a class declar
This is not a fundamental construct but a programming convenience. The attribute
operations of the utility become global variables and procedures. A utility is modeled
stereotype of a class.
28 UML v 1.0, Notation Guide

Static Structure Diagrams

ributes
opera-
s scope.

ns, all
4.10.1 Semantics

The instance-scope attributes and operations of a utility are interpreted as global att
and operations. It is inappropriate for a utility to declare class-scope attributes and
tions because the instance-scope members are already interpreted as being at clas

4.10.2 Notation

Shown as the stereotype «utility» of Class. It may have both attributes and operatio
of which are treated as global attributes and operations.

4.10.3 Example

Figure 11. Notation for utility

4.11 METACLASS

4.11.1 Semantics

A metaclass is a class whose instances are classes.

4.11.2 Notation

Shown as the stereotype «metaclass» of Class.

MathPak
«utility»

sin (Angle): Real

sqrt (Real): Real
random(): Real

cos (Angle): Real
UML v 1.0, Notation Guide 29

Static Structure Diagrams

ionships
thname

ications
simply
 to the

 depen-
kage or
 by the
ss each
4.12 CLASS PATHNAMES

4.12.1 Notation

Class symbols (rectangles) serve to define a class and its properties, such as relat
to other classes. A reference to a class in a different package is notated by using a pa
for the class, in the form:

package-name :: class-name

References to classes also appear in text expressions, most notably in type specif
for attributes and variables. In these places a reference to a class is indicated by
including the name of the class itself, including a possible package name, subject
syntax rules of the expression.

4.12.2 Example

Figure 12. Pathnames for classes in other packages

4.13 IMPORTING A PACKAGE

4.13.1 Semantics

A class in another package may be referenced. On the package level, the «imports»
dency shows the packages whose classes may be referenced within a given pac
packages recursively embedded within it. The target references must be exported
target package. Note that exports are not recursive; they must be propagated up acro

Banking::CheckingAccount

Deposit

time: DateTime::Time
amount: Currency::Cash
30 UML v 1.0, Notation Guide

Static Structure Diagrams

e the

ackage
eotype

 into
UML
cted

plate
level of containment. Imports are recursive within inner levels of containment. (Se
semantics document for full details.)

4.13.2 Notation

The imports dependency is displayed as a dependency arrow from the referencing p
to the package containing the target of the references. The arrow has the ster
«imports».

A package controls the external visibility of its contents. An item can be imported
package if it is made visible (“exported”) by its declaring package. There is no special
notation for the visibility of items within a package. Rather a view can be constru
showing the publicly available items from a package.

4.13.3 Example

Figure 13. Imports dependency among packages

4.14 ATTRIBUTE

Used to show attributes in classes. A similar syntax is used to specify qualifiers, tem
parameters, operation parameters, and so on (some of these omit certain terms).

Banking::CheckingAccount

CheckingAccount

Banking

«imports»

Customers
UML v 1.0, Notation Guide 31

Static Structure Diagrams

fic com-
rd

ls

; they
mming

 of an

rker
ool
wn.

n-

fied

tion

of a
ted).
4.14.1 Semantics

Note that an attribute is semantically equivalent to a composition association.

The type of an attribute may be complex, such as array[String] of Point. In some specifi-
cation languages, it may also be expressed as a mapping expressed without a speci
mitment to data structure, such as String→Point (where the arrow represents the standa
mathematical concept of functional mapping). This form expresses what D’Souza cal
“parameterized queries” using the syntax location(String):Point in his Catalysis method.
In any case, the details of the attribute type expressions are not specified by UML
depend on the expression syntax supported by the particular specification or progra
language being used.

4.14.2 Notation

An attribute is shown as a text string that can be parsed into the various properties
attribute model element. The default syntax is:

visibility name : type-expression = initial-value { property-string }

where visibility is one of:

+ public visibility

protected visibility

- private visibility

The visibility marker may be suppressed. The absence of a visibility ma
indicates that the visibility is not shown (not that it is undefined). A t
should assign visibilities to new attributes even if the visibility is not sho
The visibility marker is a shorthand for a full visibility property specification
string.

Additional kinds of visibility might be defined for certain programming la
guages, such as C++ implementation visibility (actually all forms of non-
public visibility are language-dependent). Such visibility must be speci
by property string or by a tool-specific convention.

where name is an identifier string;

where type-expression is a language-dependent specification of the implementa
type of an attribute;

where initial-value is a language-dependent expression for the initial value
newly created object. The initial value is optional (the equal sign is also omit
32 UML v 1.0, Notation Guide

Static Structure Diagrams

itial

rop-

ation
n object
ttribute

a tool

 icon

uous

uch as
An explicit constructor for a new object may augment or modify the default in
value;

where property-string indicates property values that apply to the element. The p
erty string is optional (the braces are omitted if no properties are specified);

A class-scope attribute is shown by underlining the entire string. The notation justific
is that a class-scope attribute is an instance value in the executing system, just as a
is an instance value, so both may be designated by underlining. An instance-scope a
is not underlined; that is the default.

class-scope-attribute

4.14.3 Presentation options

The type expression may be suppressed (but it has a value in the model).

The initial value may be suppressed, and it may be absent from the model. It is
responsibility whether and how to show this distinction.

A tool may show the visibility indication in a different way, such as by using a special
or by sorting the elements by group.

A tool may show the individual fields of an attribute as columns rather than a contin
string.

The syntax of the attribute string can be that of a particular programming language, s
C++ or Smalltalk. Specific tagged properties may be included in the string.

Particular attributes within a list may be suppressed (see List Compartment).

4.14.4 Style guidelines

Attribute names typically begin with a lowercase letter.

Attribute names in plain face.

4.14.5 Example

+size: Area = (100,100)
#visibility: Boolean = invisible
+default-size: Rectangle
UML v 1.0, Notation Guide 33

Static Structure Diagrams

s of an

rker
ool
wn.

n-

fied

le-
itted

ified
#maximum-size: Rectangle
-xptr: XWindow*

4.15 OPERATION

Used to show operations in classes.

4.15.1 Notation

An operation is shown as a text string that can be parsed into the various propertie
operation model element. The default syntax is:

visibility name (parameter-list) : return-type-expression { property-string }

where visibility is one of:

+ public visibility

protected visibility

- private visibility

The visibility marker may be suppressed. The absence of a visibility ma
indicates that the visibility is not shown (not that it is undefined). A t
should assign visibilities to new attributes even if the visibility is not sho
The visibility marker is a shorthand for a full visibility property specification
string.

Additional kinds of visibility might be defined for certain programming la
guages, such as C++ implementation visibility (actually all forms of non-
public visibility are language-dependent). Such visibility must be speci
by property string or by a tool-specific convention.

where name is an identifier string;

where return-type-expression is a language-dependent specification of the imp
mentation type of the value returned by the operation. If the return-type is om
if the operation does not return a value (C++ void);

where parameter-list is a comma-separated list of formal parameters, each spec
using the syntax:

name : type-expression = default-value

where name is the name of a formal parameter;
34 UML v 1.0, Notation Guide

Static Structure Diagrams

an

er,
age;

rop-

 oper-

a tool

 icon

uous

uch as
where type-expression is the (language-dependent) specification of
implementation type;

where default-value is an optional value expression for the paramet
expressed in and subject to the limitations of the eventual target langu

where property-string indicates property values that apply to the element. The p
erty string is optional (the braces are omitted if no properties are specified);

A class-scope operation is shown by underlining the entire string. An instance-scope
ation is the default and is not marked.

4.15.2 Presentation options

The type expression may be suppressed (but it has a value in the model).

The initial value may be suppressed, and it may be absent from the model. It is
responsibility whether and how to show this distinction.

A tool may show the visibility indication in a different way, such as by using a special
or by sorting the elements by group.

A tool may show the individual fields of an attribute as columns rather than a contin
string.

The syntax of the attribute string can be that of a particular programming language, s
C++ or Smalltalk. Specific tagged properties may be included in the string.

4.15.3 Style guidelines

Attribute names typically begin with a lowercase letter.

Attribute names in plain face.

An abstract operation may be shown in italics.
UML v 1.0, Notation Guide 35

Static Structure Diagrams

have a
ns are

s may
t of one
ce but
ol. A

tion on

h itself.
d along
nsibility
on does

l small
 in
4.15.4 Example

Figure 14. Operation list with a variety of operations

4.16 ASSOCIATION

Binary associations are shown as lines connecting class symbols. The lines may
variety of adornments to shown their properties. Ternary and higher-order associatio
shown as diamonds connected to class symbols by lines.

4.17 BINARY ASSOCIATION

4.17.1 Notation

A binary association is drawn as a solid path connecting two class symbols (both end
be connected to the same class, but the two ends are distinct). The path may consis
or more connected segments. The individual segments have no semantic significan
may be graphically meaningful to a tool in dragging or resizing an association symb
connected sequences of segments is called a path.

The end of an association where it connects to a class is called an association role. Most of
the interesting information about an association is attached to its roles. See the sec
Association Role for details.

The path may also have graphical adornments attached to the main part of the pat
These adornments indicate properties of the entire association. They may be dragge
a segment or across segments but must remain attached to the path. It is a tool respo
to determine how close association adornments may approach a role so that confusi
not occur. The following kinds of adornments may be attached to a path:

association name

Designates the (optional) name of the association.

Shown as a name string near the path. The string may have an optiona
black solid triangle in it; the point of the triangle indicates the direction

+create ()

+display (): Location
+hide ()

-attachXWindow(xwin:Xwindow*)
36 UML v 1.0, Notation Guide

Static Structure Diagrams

ignif-
red as
for a
he
s
ay

 may

ibutes,
ocia-

d line.

 same
y be
e the

antic
n be
 both

ar jog

n icons
rtical
y case

ential
 dashed
, with
which to read the name. The name-direction arrow has no semantics s
icance; it is purely descriptive. The classes in the association are orde
indicated by the name-direction arrow. (Note that there is no need
name direction property on the association model; the ordering of t
classes within the association is the name direction. This convention work
even with n-ary associations.) A stereotype keyword within guillemets m
be placed above or in front of the association name. A property string
be placed after or below the association name.

association class symbol

Designates an association that has class-like properties, such as attr
operations, and other associations. This is present if and only if the ass
tion is an association class.

Shown as a class symbol attached to the association path by a dashe

The association path and the association class symbol represent the
underlying model element which has a single name. The name ma
placed on the path, in the class symbol, or on both (but they must b
same name).

Logically the association class and the association are the same sem
entity, but they are graphically distinct. The association class symbol ca
dragged away from the line but the dotted line must remain attached to
the path and the class symbol.

4.17.2 Presentation options

When two paths cross, the crossing may optionally be shown with a small semicircul
to indicate that the paths do not intersect (as in electrical circuit diagrams).

4.17.3 Style guidelines

Lines may be drawn at any angle. One popular style is to draw straight paths betwee
whenever possible. Another popular style is to have all lines be horizontal or ve
(orthogonal grid), using multiple segments to compose paths when necessary. In an
the user should be consistent.

4.17.4 Options

Or-association. An or-constraint indicates a situation in which only one of several pot
associations may be instantiated at one time for any single object. This is shown as a
line connecting two or more associations, all of which must have a class in common
UML v 1.0, Notation Guide 37

Static Structure Diagrams

 par-
 of the

he role
s. Most

he class

ot part
the constraint string “{or}” labeling the dashed line. Any instance of the class may only
ticipate in at most one of the associations at one time. (This is simply a particular use
constraint notation.)

4.17.5 Example

Figure 15.Association notation

4.18 ASSOCIATION ROLE

An association role is simply an end of an association where it connects to a class. T
is part of the association, not part of the class. Each association has two or more role
of the interesting details about an association are attached to its roles.

4.18.1 Notation

The path may have graphical adornments at each end where the path connects to t
symbol. The end of an association attached to a class is called a role. These adornments
indicate properties of the role. The adornments are part of the association symbol, n

Person

Manages

Works-for
Company

boss

worker

employeeemployer
1..∗

∗

∗

0..1

Job

Account

Person

Corporation

{or}

salary
38 UML v 1.0, Notation Guide

Static Structure Diagrams

or near
y be

 role
eci-

s can
 kinds
es not
t new
uch

lt and

ation
on-

ally
ticular

new

actual

ation
ached
own
me-
tional

cates
of the class symbol. The role adornments are either attached to the end of the line
the end of the line and must drag with it. The following kinds of adornments ma
attached to a role:

multiplicity – see detail section. Multiplicity may be suppressed on a particular
or for an entire diagram. In an incomplete model the multiplicity may be unsp
fied in the model itself, in which case it must be suppressed in the notation.

ordering – if the multiplicity is greater than one, then the set of related element
be ordered or unordered. The default is unordered (they form a set). Various
of ordering can be specified as a constraint on the role. The declaration do
specify how the ordering is established or maintained; operations that inser
elements must make provision for specifying their position either implicitly (s
as at the end) or explicitly. Possible values include:

unordered — the elements form an unordered set. This is the defau
need not be shown explicitly.

ordered — the elements are ordered into a list. This generic specific
includes all kinds of ordering. This may be specified by a keyword c
straint: “{ordered}”.

An ordered relationship may be implemented in various ways but this is norm
specified as a language-specified code generation property to select a par
implementation.

At implementation level, sorting may also be specified. It does not add
semantic information but it expresses a design decision:

sorted — the elements are sorted based on their internal values. The
sorting rule is best specified as a separate constraint.

qualifier – see detail section. Qualifier is optional but not suppressible.

navigability

An arrow may be attached to the end of the path to indicate that navig
is supported toward the class attached to the arrow. Arrows may be att
to zero, one, or two ends of the path. In principle arrows could be sh
whenever navigation is supported in a given direction. In practice it is so
times convenient to suppress some of the arrows and just show excep
situations. Here are some options on showing navigation arrows:

Presentation option 1: Show all arrows. The absence of an arrow indi
navigation is not supported.
UML v 1.0, Notation Guide 39

Static Structure Diagrams

about
p-

bility
iga-
om
nt in
ma-

tion.
ot be
e. The

ion

y the
tional

tax for
ciation

s a tree
adorn-
ere are

order,
Presentation option 2: Suppress all arrows. No inference can be drawn
navigation. This is similar to any situation in which information is su
pressed from a view.

Presentation options 3: Suppress arrows for associations with naviga
in both directions; show arrows only for associations with one-way nav
bility. In this case the two-way navigability cannot be distinguished fr
no-way navigation, but the latter case is normally rare or nonexiste
practice. This is yet another example of a situation in which some infor
tion is suppressed from a view.

aggregation indicator

A hollow diamond is attached to the end of the path to indicate aggrega
The diamond may not be attached to both ends of a line, but it need n
present at all. The diamond is attached to the class that is the aggregat
aggregation is optional but not suppressible.

If the diamond is filled, then it signifies the strong form of aggregat
known as composition.

rolename

A name string near the end of the path. It indicates the role played b
class attached to end of the path near the rolename. The rolename is op
but not suppressible.

Other properties can be specified for association roles but there is no graphical syn
them. To specify such properties use the constraint syntax near the end of the asso
path (a text string in braces). Examples of such other properties include mutability.

4.18.2 Presentation options

If there are two or more aggregations to the same aggregate, they may be drawn a
by merging the aggregation end into a single segment. This requires that all of the
ments on the aggregation ends be consistent. This is purely a presentation option; th
no additional semantics to it.

4.18.3 Style guidelines

If there are multiple adornments on a single role, they are presented in the following
reading from the end of the path attached to the class toward the bulk of the path:

qualifier

aggregation symbol
40 UML v 1.0, Notation Guide

Static Structure Diagrams

are not
. It is
wise
wded
ole, or

ume.
pos-
gative

ated
nge of
navigation arrow

Rolenames and multiplicity should be placed near the end of the path so that they
confused with a different association. They may be placed on either side of the line
tempting to specify that they will always be placed on a given side of the line (clock
or counterclockwise) but this is sometimes overridden by the need for clarity in a cro
layout. A rolename and a multiplicity may be placed on opposite sides of the same r
they may be placed together (for example, “* employee”).

4.18.4 Example

Figure 16. Various adornments on association roles

4.19 MULTIPLICITY

A multiplicity string specifies the range of allowable cardinalities that a set may ass
Multiplicity specifications may be given for roles within associations, parts within com
ites, repetitions, and other purposes. Essentially a multiplicity is a subset of the nonne
open integers.

4.19.1 Notation

A multiplicity specification is shown as a text string comprising a comma-separ
sequence of integer intervals, where an interval represents a (possibly infinite) ra
integers, in the format:

lower-bound .. upper-bound

Polygon Point

Contains

{ordered}

3..∗1

GraphicsBundle

color
texture
density

1

1

UML v 1.0, Notation Guide 41

Static Structure Diagrams

e
d. In
nlim-

s could
l use.
itted.

ingle

 the
o or

pref-

.1” is

rtition
where lower-bound and upper-bound are literal integer values, specifying th
closed (inclusive) range of integers from the lower bound to the upper boun
addition, the star character (*) may be used for the upper bound, denoting an u
ited upper bound. In a parameterized context (such as a template) the bound
be expressions but they must evaluate to literal integer values for any actua
Unbound expressions that do not evaluate to literal integer values are not perm

If a single integer value is specified, then the integer range contains the s
integer value.

If the multiplicity specification comprises a single star (*), then it denotes
unlimited nonnegative integer range, that is, it is equivalent to *..* = 0..* (zer
more).

4.19.2 Style guidelines

Intervals should preferably be monotonically increasing. For example, “1..3,7,10” is
erable to “7,10,1..3”.

Two contiguous intervals should be combined into a single interval. For example, “0.
preferable to “0,1”.

4.19.3 Example

0..1

1

0..*

*

1..*

1..6

1..3,7..10,15,19..*

4.20 QUALIFIER

A qualifier is an association attribute or tuple of attributes whose values serve to pa
the set of objects associated with an object across an association.
42 UML v 1.0, Notation Guide

Static Structure Diagrams

etween
tangle
ith the
t is, an
rtition

set of
mmon
value
nique
lifier

more
ributes,

 asso-

ould

guish

 this is
4.20.1 Notation

A qualifier is shown as a small rectangle attached to the end of an association path b
the final path segment and the symbol of the class that it connects to. The qualifier rec
is part of the association path, not part of the class. The qualifier rectangle drags w
path segments. The qualifier is attached to the source end of the association; tha
object of the source class together with a value of the qualifier uniquely select a pa
in the set of target class objects on the other end of the association.

The multiplicity attached to the target role denotes the possible cardinalities of the
target objects selected by the pairing of a source object and a qualifier value. Co
values include “0..1” (a unique value may be selected, but every possible qualifier
does not necessarily select a value), “1” (every possible qualifier value selects a u
target object, therefore the domain of qualifier values must be finite), and “*” (the qua
value is an index that partitions the target objects into subsets).

The qualifier attributes are drawn within the qualifier box. There may be one or
attributes shown one to a line. Qualifier attributes have the same notation as class att
except that initial value expressions are not meaningful.

It is permissible (although somewhat rare) to have a qualifier on each end of a single
ciation.

4.20.2 Presentation options

A qualifier may not be suppressed (it provides essential detail whose omission w
modify the inherent character of the relationship).

A tool may use a lighter line for qualifier rectangles than for class rectangles to distin
them clearly.

4.20.3 Style guidelines

The qualifier rectangle should be smaller than the attached class rectangle, although
not always practical.
UML v 1.0, Notation Guide 43

Static Structure Diagrams

as asso-
 just a

ne to an
 associ-
he usual
 are no

n does

ears to
4.20.4 Example

Figure 17. Qualified associations

4.21 ASSOCIATION CLASS

An association class is an association that also has class properties (or a class that h
ciation properties). Even though it is drawn as an association and a class, it is really
single model element.

4.21.1 Notation

An association class is shown as a class symbol (rectangle) attached by a dashed li
association path. The name in the class symbol and the name string attached to the
ation path are redundant and should be the same. The association path may have t
adornments on either end. The class symbol may have the usual contents. There
adornments on the dashed line..

4.21.2 Presentation options

The class symbol may be suppressed (it provides subordinate detail whose omissio
not change the overall relationship. The association path may not be suppressed.

4.21.3 Style guidelines

The attachment point should not be near enough to either end of the path that it app
be attached to the end of the path or to any of the role adornments.

Square

Chessboard

rank:Rank
file:File

Person

Bank

account #

∗
0..1 1

1

44 UML v 1.0, Notation Guide

Static Structure Diagrams

ent and
mbol or
s, then
n class

ations,
phasize

 appear
pective

ulti-
n the
Note that the association path and the association class are a single model elem
therefore have a single name. The name can be shown on the path or the class sy
both. If an association class has only attributes but no operations or other association
the name may be displayed on the association path and omitted from the associatio
symbol to emphasize its “association nature.” If it has operations and other associ
then the name may be omitted from the path and placed in the class rectangle to em
its “class nature.” In neither case are the actual semantics different.

4.21.4 Example

Figure 18. Association class

4.22 N-ARY ASSOCIATION

4.22.1 Semantics

An n-ary association is an association among 3 or more classes (a single class may
more than once). Each instance of the association is an n-tuple of values from the res
classes. A binary association is a special case with its own notation.

Multiplicity for n-ary associations may be specified but is less obvious than binary m
plicity. The multiplicity on a role represents the potential number of instance tuples i
association when the other N-1 values are fixed.

An n-ary association may not contain the aggregation marker on any role.

Person

Manages

Company

boss

worker

employeeemployer
1..∗

∗

∗

0..1

Job
salary
UML v 1.0, Notation Guide 45

Static Structure Diagrams

inator
associ-
 as with
n are

is indi-

.

4.22.2 Notation

An n-ary association is shown as a large diamond (that is, large compared to a term
on a path) with a path from the diamond to each participant class. The name of the
ation (if any) is shown near the diamond. Role adornments may appear on each path
a binary association. Multiplicity may be indicated, however, qualifiers and aggregatio
not permitted.

An association class symbol may be attached to the diamond by a dashed line. Th
cates an n-ary association that has attributes, operations, and/or associations.

4.22.3 Style guidelines

Usually the lines are drawn from the points on the diamond or the midpoint of a side
46 UML v 1.0, Notation Guide

Static Structure Diagrams

er. It is
 appear

f part
ared).
). Parts
e and
ate.

ment.
wing
4.22.4 Example

This example shows the record of a team in each season with a particular goalkeep
assumed that the goalkeeper might be traded during the season and can therefore
with different teams.

Figure 19. Ternary association that is also an association class

4.23 COMPOSITION

Composition is a form of aggregation with strong ownership and coincident lifetime o
with the whole. The multiplicity of the aggregate end may not exceed one (it is unsh
The aggregation is unchangeable (once established the links may not be changed
with multiplicity > 1 may be created after the aggregate itself but once created they liv
die with it. Such parts can also be explicitly removed before the death of the aggreg

Composition may be shown by a solid filled diamond as an association role adorn
Alternately UML provides a graphically-nested form that is more convenient for sho
composition in many cases.

PlayerTeam

Year

Record

goals for
goals against
wins
losses

goalkeeper

∗

∗

∗

season

team

ties
UML v 1.0, Notation Guide 47

Static Structure Diagrams

within
ul only
rating
en-
ctice it
ociation

 spec-
 exe-

nment,
 parts

ave a
ht

ulti-
name

of an
wn in

ts, but
 parts
arts;
e com-

classes
4.23.1 Semantics

Within a composite additional associations can be defined that are not meaningful
the system in general. These represent patterns of connection that are meaningf
within the context of the composite. Such associations can be thought of as gene
quasiclasses (or qua-types as Bock and Odell call them) that are specializations of the g
eral classes; the specializations are defined only inside the composite. In actual pra
often happens that one of the classes in the association does not know about the ass
or the other class, so that the implementation need not actually use the qua-class.

The entire system may be thought of as an implicit composite, so that any multiplicity
ifications within top-level classes restrict the cardinality of the classes in a particular
cution; Embley’s singleton classes can be seen in that light.

4.23.2 Notation

Instead of using binary association paths using the composition aggregation ador
composition may be shown by graphical nesting of the symbols of the elements for the
within the symbol of the element for the whole. A nested class-like element may h
multiplicity within its composite element. The multiplicity is shown in the upper rig
corner of the symbol for the part; if the multiplicity mark is omitted then the default m
plicity is many. A nested element may have a rolename within the composition; the
is shown in front of its type in the syntax:

rolename ‘:’ classname

Alternately, composition is shown by a solid-filled diamond adornment on the end
association path attached to the element for the whole. The multiplicity may be sho
the normal way.

Another alternative is to show the composite as a graphical symbol containing its par
to draw an association line from the composition symbol boundary to each of the
within it. Rolenames and multiplicity of the parts may be indicated for each of the p
using this notation it is unnecessary to display the aggregation diamond because th
position aggregation is specified by the nesting.

Note that attributes are, in effect, composition relationships between a class and the
of its attributes.
48 UML v 1.0, Notation Guide

Static Structure Diagrams

esses,

symbol
pecial
ithin
 them-

grams.
 state
 gener-
4.23.3 Design guidelines

This notation is applicable to “class-like” model elements: classes, types, nodes, proc
etc.

Note that a class symbol is a composition of its attributes and operations. The class
may be thought of as an example of the composition nesting notation (with some s
layout properties). However, attribute notation subordinates the attributes strongly w
the class, so it should be used when the structure and identity of the attribute objects
selves is unimportant outside the class.

Be aware that state diagrams use different notation for composition than class dia
The composition of a state from two or more substates is shown by partitioning the
region into subregions by dashed lines. The simple nesting of states indicates state
alization.
UML v 1.0, Notation Guide 49

Static Structure Diagrams
4.23.4 Example

Figure 20. Different ways to show composition

Window

scrollbar [2]: Slider
title: Header
body: Panel

Window

scrollbar title body

scrollbar:Slider

Header Panel

2 1 1

Window

Slider

2

title:Header
1

body:Panel
1

Slider

Window

title

1

Panel
1

2
scrollbar

body

Header

1
11
50 UML v 1.0, Notation Guide

Static Structure Diagrams

a more
infor-

 a sub-
e at the

The

other
ymbol
uld be

ertype
ch) are

 shared
h sub-

 paths
s share
4.24 GENERALIZATION

Generalization is the taxonomic relationship between a more general element and
specific element that is fully consistent with the first element and that adds additional
mation. It is used for classes, packages, use cases, and other elements.

4.24.1 Notation

Generalization is shown as a solid-line path from the more specific element (such as
class) to the more general element (such as a superclass), with a large hollow triangl
end of the path where it meets the more general element.

A generalization path may have a text label in the following format:

discriminator : powertype

where discriminator is the name of a partition of the subtypes of the supertype.
subtype is declared to be in the given partition;

where powertype is the name of a type whose instances are subtypes of an
type, namely the subtypes whose paths bear the powertype name. If a type s
with the same name appears in the model, it designates the same type; it sho
shown with the stereotype «powertype». For example, TreeSpecies is a pow
on the Tree type; consequently instances of TreeSpecies (such as Oak or Bir
also subtypes of Tree.

Either the discriminator, or the colon and powertype, or both may be omitted.

Note that the word type also includes both types and classes.

4.24.2 Presentation options

A group of generalization paths for a given superclass may be shown as a tree with a
segment (including triangle) to the superclass, branching into multiple paths to eac
class.

If a text label is placed on a generalization triangle shared by several generalization
to subclasses, the label applies to all of the paths. In other words, all of the subclasse
the given properties.
UML v 1.0, Notation Guide 51

Static Structure Diagrams

lar dia-
t indi-

classes

classes.
gle (if
 gener-

 sub-

 sub-

ddi-

to be
 the

s not
 exist

given
dicate
4.24.3 Details

The existence of additional subclasses in the model that are not shown on a particu
gram may be shown using an ellipsis (. . .) in place of a subclass. (Note: this does no
cate that additional classes may be added in the future. It indicates that additional
exist right now but are not being seen.)

Predefined constraints may be used to indicate semantic constraints among the sub
A comma-separated list of keywords is placed in braces either near the shared trian
several paths share a single triangle) or else near a dotted line that crosses all of the
alization lines involved. The following keywords (among others) may be used:

overlapping

disjoint

complete

incomplete

4.24.4 Semantics

The following constraints are predefined:

overlapping A descendent may be descended from more than one of the
classes.

disjoint A descendent may not be descended from more than one of the
classes.

complete All subclasses have been specified (whether or not shown). No a
tional subclasses are expected.

incomplete Some subclasses have been specified but the list is known
incomplete. There are additional subclasses that are not yet in
model. The is a statement about the model itself. Note that this i
the same as the ellipsis, which states that additional subclasses
in the model but are not shown on the current diagram.

The discriminator must be unique among the attributes and association roles of the
superclass. Multiple occurrences of the same discriminator name are permitted and in
that the subclasses belong to the same partition.

Semantic variation points
52 UML v 1.0, Notation Guide

Static Structure Diagrams

 other
ration
ire a dif-

nd the
se are

one

n.
There are different possible ways to interpret the semantics of generalization (as with
constructs). Although there is a standard UML interpretation consistent with the ope
of the major object-oriented languages, there are purposes and languages that requ
ferent interpretation. Different semantics can be permitted by identifying semantic varia-
tion points and giving them names, so that different users and tools could understa
variation being used (it is not assumed that all tools will support this concepts). The
some semantic variations applicable to generalization:

Multiple inheritance. Whether a class may have more than one superclass.

Multiple classification. Whether an object may belong directly to more than
class.

Dynamic classification. Whether an object may change class during executio
UML v 1.0, Notation Guide 53

Static Structure Diagrams

, and
cted if
The ordinary UML semantics assumes multiple inheritance, no multiple classification
no dynamic classification, but most parts of the semantics and notation are not affe
these assumptions are change.

4.24.5 Example

Figure 21. Styles of displaying generalization

Shape

SplineEllipsePolygon

Shape

SplineEllipsePolygon

Shared Target Style

Separate Target Style

. . .

. . .
54 UML v 1.0, Notation Guide

Static Structure Diagrams

ents. It
 for its
uire a
Figure 22. Generalization with discriminators and constraints, separate target style

Figure 23. Generalization with power type, shared target style

4.25 DEPENDENCY

A dependency indicates a semantic relationship between two (or more) model elem
relates the model elements themselves and does not require a set of instances
meaning. It indicates a situation in which a change to the target element may req
change to the source element in the dependency.

Vehicle

WindPowered
Vehicle

MotorPowered
Vehicle

Land
Vehicle

Water
Vehicle

venue

venuepower
power

SailboatTruck

{overlapping} {overlapping}

Tree

Oak Elm

{disjoint, incomplete}

Birch

«powertype»
TreeSpecies

species:TreeSpecies
UML v 1.0, Notation Guide 55

Static Structure Diagrams

del ele-
al ste-

 note or
4.25.1 Notation

A dependency is shown as a dashed arrow from one model element to another mo
ment that the first element is dependent on. The arrow may be labeled with an option
reotype and an optional name.

4.25.2 Presentation options

If one of the elements is a note or constraint then the arrow may be suppressed (the
constraint is the source of the arrow).
56 UML v 1.0, Notation Guide

Static Structure Diagrams

 been
istent
4.25.3 Example

Figure 24. Various dependencies among classes

Figure 25. Dependencies among packages

4.26 REFINEMENT RELATIONSHIP

4.26.1 Semantics

The refinement relationship represents the fuller specification of something that has
already specified at a certain level of detail. It is a commitment to certain choices cons

«friend»
ClassA ClassB

ClassC

«instantiates»

«calls»

ClassD

operationZ()
«friend»

Controller

Diagram
Elements

Domain
Elements

Graphics
Core
UML v 1.0, Notation Guide 57

Static Structure Diagrams

n two

ess of
velop-
cludes

-level
(lev-

 such
ple-

 effi-
ptimi-

. You
ifferent
n class,
s, and

 of the

rsion

 with a
 A ste-
ached
.

type

efine-
with the more general specification but not required by it. It is a relationship betwee
descriptions of the same thing at different levels of abstraction.

The evolution of a design may be described by refinement relationships. entire proc
design is a process of refinement. Note that refinement is a relationship between de
ment artifacts and does not imply any top-down development process. Refinement in
the following kinds of things (not necessarily complete):

Relation between a type and a class that realizes it (realization).

Relation between an analysis class and a design class (design trace).

Relation between a high-level construct at a coarse granularity and a lower
construct at a finer granularity, such as a collaboration at two levels of detail
eling of detail).

Relation between a construct and its implementation at a lower virtual layer,
as the implementation of a type as a collaboration of lower-level objects (im
mentation).

Relation between a straightforward implementation of a construct and a more
cient but more obscure implementation that accomplishes the same effect (o
zation).

Note that refinement shows a relationship between two different views of something
can use either view but they are alternate ways of expressing the same thing under d
conditions. Examples include the relationship between an analysis type and a desig
between a scenario at a high level and the same scenario broken into finer step
between a simple implementation of an operation and an optimized implementation
same operation.

A refinement relationship may also have a specification of how the more detailed ve
maps into the more abstract version.

4.26.2 Notation

Refinement may be shown as a dashed generalization symbol, that is, a dashed line
closed hollow triangular arrowhead on the end connected to more general element.
reotype may be attached to specify a particular kind of refinement. A note may be att
to the line stating the mapping from the more specific form to the more general form

Refinement within a given model can be shown as a dependency with the stereo
«refines» or one of its more specific forms, such as «implements». Refinement between
models may be modeled as an invisible hyperlink supported by a dynamic tool. The r
58 UML v 1.0, Notation Guide

Static Structure Diagrams

ached

wn for
ation.

d ele-
ment relationship may have a mapping attached to it; the mapping will normally be re
via an invisible hyperlink from the relationship path.

4.26.3 Example

Figure 26. Refinement

4.27 DERIVED ELEMENT

A derived element is one that can be computed from another one, but that is sho
clarity or that is included for design purposes even though it adds no semantic inform

4.27.1 Notation

A derived element is shown by placing a slash (/) in front of the name of the derive
ment, such as an attribute or a rolename.

String

StringSet

*
elements

HashTableStringSet «type»

body:HashTable<String,Integer>

add(e:String)
remove(e:String)
test(e:String):Boolean

add(e:String)
remove(e:String)
test(e:String):Boolean

e is in elements iff (e,1) is in body;
all (x,n) in body have n=1
UML v 1.0, Notation Guide 59

Static Structure Diagrams

he ste-
dency
ow can

dels.

 for an
n appli-
4.27.2 Style guidelines

The details of computing a derived element can be specified by a dependency with t
reotype «derived». Usually it is convenient in the notation to suppress the depen
arrow and simply place a constraint string near the derived element, although the arr
be included when it is helpful.

4.27.3 Example

Figure 27. Derived attribute and derived association

4.28 NAVIGATION EXPRESSION

UML notation provides a small language for expressing navigation paths in class mo

4.28.1 Notation

These forms can be chained together. The leftmost element must be an expression
object or a set of objects. The expressions are meant to work on sets of values whe
cable.

Person

birthdate
/age

{age = currentDate - birthdate}

Company

Person

Department

WorksForDepartment

/WorksForCompany

{ Person.employer=Person.department.employer }

∗

∗
∗

1

1

1
employer

employer
department
60 UML v 1.0, Notation Guide

Static Structure Diagrams

 the
ts in
ct(s).
icity

tion
 to
, the

t
jects

is
x is
set ‘.’ selector the selector is the name of an attribute in the objects of the set or
name of a role of the target end of a link attached to the objec
the set. The result is the value of the attribute or the related obje
The result is a value or a set of values depending on the multipl
of the set and the association.

set ‘.’ ‘~’ selector the selector is the name of a role on the source end of an associa
attached to the set of objects. The result is the object(s) attached
the other side. This represents an inverse relationships, that is
use of the rolename in the “wrong way.”

set ‘[‘ boolean-expression ‘]’
the boolean-expression is written in terms of objects within the se
and values accessible from them. The result is the subset of ob
for which the boolean expression is true.

set ‘.’ selector ‘[‘ qualifier-value ‘]’
the selector designates a qualified association that qualifies the set.
The qualifier-value is a value for the qualifier attribute. The result
the related object selected by the qualifier. Note that this synta
applicable to array indexing as a form of qualification.

4.28.2 Example

flight.pilot.training_hours > flight.plane.minimum_hours

company.employee [title = “Manager” and count (employee) > 10]
UML v 1.0, Notation Guide 61

Use Case Diagrams

stem.

oundary,
nd gen-
5. USE CASE DIAGRAMS

A use case diagram shows the relationship among actors and use cases within a sy

5.1 USE CASE DIAGRAM

5.1.1 Notation

A use case diagram is a graph of actors, a set of use cases enclosed by a system b
communication (participation) associations between the actors and the use cases, a
eralizations among the use cases.

5.1.2 Example

Figure 28. Use case diagram

Customer

Supervisor

Salespersonplace
order

establish
credit

check
status

Telephone Catalog

fill orders

Shipping Clerk
62 UML v 1.0, Notation Guide

Use Case Diagrams

he “ste-
otypes,

s and

ehav-

eotype
re.

ecting
“com-
5.2 USE CASE

5.2.1 Notation

A use case is shown as an ellipse containing the name of the use case.

5.2.2 Presentation options

The name of the use case may be placed below the ellipse. (This may be viewed as t
reotype” of the use case, which has the same symbol. According to the rules of stere
the name may be placed above, inside, or below the symbol.)

5.2.3 Style guidelines

Actors names should follow capitalization and punctuation guidelines used for type
classes in the same model.

Use case names should follow capitalization and punctuation guidelines used for b
ioral items in the same model.

5.3 ACTOR

5.3.1 Notation

An actor is shown as a class rectangle with the stereotype “actor”. The standard ster
icon for a use case is the “stick man” figure with the name of the actor below the figu

5.4 USE CASE RELATIONSHIPS

5.4.1 Notation

The following relationships are meaningful within a use case diagram:

Communicates – The participation of an actor in a use case is shown by conn
the actor symbol to the use case symbol by a solid path. The actor is said to
municate” with the use case.
UML v 1.0, Notation Guide 63

Use Case Diagrams

raliza-
 arrow
ase A
to spe-
vior
 single

 arrow
led with
dicates
by B.

own by
ay be

k. The
 sce-

essages
pecified

ed by
ormally at
 case
and the

society
uce the
 among

rlinks
Extends – An “extends” relationship between use cases is shown by a gene
tion arrow from the use case providing the extension to the base use case. The
is labeled with the stereotype «extends». An extends relationships from use c
to use case B indicates that an instance of use case B may include (subject
cific conditions specified in the extension) the behavior specified by A. Beha
specified by several extenders of a single target use case may occur within a
use case instance.

Uses – A “uses” relationship between use cases is shown by a generalization
from the use case doing the use to the use case being used. The arrow is labe
the stereotype «uses». A uses relationship from use case A to use case B in
that an instance of the use case A will also include the behavior as specified

The relationship between a use case and its instances (on one hand) are usually sh
an invisible hyperlink. The relationship between a use case and its implementation m
shown as a refinement relationship but may also be shown as an invisible hyperlin
expectation is that a tool will support the ability to “zoom into” a use case to see its
narios and/or implementation as an interaction.

The specification of use case external behavior defines the possible sequences of m
exchanged among the actors and the system. At the use case level, these may be s
by a state machine (including an activity diagram) in which the transitions are label
message exchanges. A use case type can be instantiated as a use case instance. N
least one scenario should be prepared for each significantly different kind of use
instance. Each scenario shows a sequence of interactions between the actors
system, with all decisions definite.

The implementation of a use case type can be shown as a collaboration, which is a
of objects and links together with the possible sequences of message flows that prod
effect of the use case. Collaboration diagrams show the sequences of messages
objects that implement the use case.

Both instantiation and implementation of use cases may be shown by invisible hype
from the use case to another diagram.
64 UML v 1.0, Notation Guide

Use Case Diagrams
5.4.2 Example

Figure 29. Use case relationships

Place
Order

Order
Product

Supply
Customer

Data

Arrange
Payment

«uses»«uses»
«uses»

Request
Catalog

«extends»

with Order
UML v 1.0, Notation Guide 65

Sequence Diagrams

n dia-
asizing

hows
t they
 objects.

t pur-

es) and
rm). In

w it in
re better
w the
 given

e hori-
. (The
 but in
ce to

a dia-

 Chart
rived
6. SEQUENCE DIAGRAMS

A pattern of interaction among objects is shown on an interaction diagram. Interactio
grams come in two forms based on the same underlying information but each emph
a particular aspect of it: sequence diagrams and collaboration diagrams.

A sequence diagram shows an interaction arranged in time sequence. In particular, it s
the objects participating in the interaction by their “lifelines” and the messages tha
exchanged arranged in time sequence. It does not show the associations among the

Sequence diagrams come in several slightly different formats intended for differen
poses.

A sequence diagram can exist in a generic form (describes all the possible sequenc
in an instance form (describes one actual sequence consistent with the generic fo
cases without loops or branches, the two forms are isomorphic.

Sequence diagrams and collaboration diagrams express similar information but sho
different ways. Sequence diagrams show the explicit sequence of messages and a
for real-time specifications and for complex scenarios. Collaboration diagrams sho
relationships among objects and are better for understanding all of the effects on a
object and for procedural design.

6.1 SEQUENCE DIAGRAM

6.1.1 Notation

A sequence diagram has two dimensions: the vertical dimension represents time, th
zontal dimension represents different objects. Normally time proceeds down the page
dimensions may be reversed if desired.) Usually only time sequences are important
real-time applications the time axis could be an actual metric. There is no significan
the horizontal ordering of the objects. Objects can be grouped into “swimlanes” on
gram.

(Note that much of this notation is drawn directly from the Object Message Sequence
notation of Buschmann, Meunier, Rohnert, Sommerlad, and Stal, which is itself de
with modifications from the Message Sequence Chart notation.)
66 UML v 1.0, Notation Guide

Sequence Diagrams

ifferent

nd so
 label.
6.1.2 Presentation options

The axes can be interchanged, so that time proceeds horizontally to the right and d
objects are shown as horizontal lines.

Various labels (such as timing marks, descriptions of actions during an activation, a
one) can be shown either in the margin or near the transitions or activations that they

6.1.3 Example

Figure 30. Simple sequence diagram with concurrent objects

caller exchange

lift receiver

dial tone

dial digit

a

b

c

{b - a < 1 sec.}

{c - b < 10 sec.}

. . .

d

d’

route

{d’ - d< 5 sec.}

receiver

phone ringsringing tone

answer phone

stop ringingstop tone

The call is
routed through
the network.

At this point
the parties
can talk.
UML v 1.0, Notation Guide 67

Sequence Diagrams

ction
Figure 31. Sequence diagram with focus of control, conditional, recursion, creation, destru

op()

[x>0] foo(x)

[x<0] bar(x)

doit(z)
doit(w)

more()

ob1:C1

ob2:C2

ob3:C3 ob4:C4
68 UML v 1.0, Notation Guide

Sequence Diagrams

ts the
ng the
 point;
wn at
ge that
uring

causes
m the
 of the
as its

ach
s may

per-

time
ay be
alter-
ted on
t the
mbol is
6.2 OBJECT LIFELINE

6.2.1 Notation

An object is shown as a vertical dashed line called the “lifeline”. The lifeline represen
existence of the object at a particular time. If the object is created or destroyed duri
period of time shown on the diagram, then its lifeline starts or stops at the appropriate
otherwise it goes from the top to the bottom of the diagram. An object symbol is dra
the head of the lifeline; if the object is created during the diagram, then the messa
creates it is drawn with its arrowhead on the object symbol. If the object is destroyed d
the diagram, then its destruction is marked by a large “X”, either at the message that
the destruction or (in the case of self-destruction) at the final return message fro
destroyed object. An object that exists when the transaction starts is shown at the top
diagram (above the first arrow). An object that exists when the transaction finishes h
lifeline continue beyond the final arrow.

The lifeline may split into two or more concurrent lifelines to show conditionality. E
separate track corresponds to a conditional branch in the message flow. The lifeline
merge together at some subsequent point.

6.2.2 Example

See Figure 31.

6.3 ACTIVATION

An activation (focus of control) shows the period of time during which an object is
forming an action either directly or through a subordinate procedure.

6.3.1 Notation

An activation is shown as a tall thin rectangle whose top is aligned with its initiation
and whose bottom is aligned with its completion time. The action being performed m
labeled in text next to the activation symbol or in the left margin, depending on style;
nately the incoming message may indicate the action, in which case it may be omit
the activation itself. In procedural flow of control, the top of the activation symbol is a
tip of an incoming message (the one that initiates the action) and the base of the sy
at the tail of a return message.
UML v 1.0, Notation Guide 69

Sequence Diagrams

shows
cts are
(by a

cedure
ject. In
ime. In
vation
visu-

xpec-
ent.

feline
rt and
 (oper-

quence
umbers

shows
numbers
mes-

d, that

trans-
get of
y be
In the case of concurrent objects each with their own threads of control, an activation
the duration when each object is performing an operation; operations by other obje
not relevant. If the distinction between direct computation and indirect computation
nested procedure) is unimportant, the entire lifeline may be shown as an activation.

In the case of procedural code, an activation shows the duration during which a pro
is active in the object or a subordinate procedure is active, possibly in some other ob
other words, all of the active nested procedure activations may be seen at a given t
the case of a recursive call to an object with an existing activation, the second acti
symbol is drawn slightly to the right of the first one, so that they appear to “stack up”
ally. (Recursive calls may be nested to an arbitrary depth.)

6.3.2 Example

See Figure 31.

6.4 MESSAGE

A message is a communication between objects that conveys information with the e
tation that action will ensue. The receipt of a message is normally considered an ev

6.4.1 Notation

A message is shown as a horizontal solid arrow from the lifeline of one object to the li
of another object. In case of a message from an object to itself, the arrow may sta
finish on the same object symbol. The arrow is labeled with the name of the message
ation or signal) and its argument values. The arrow may also be labeled with a se
number to show the sequence of the message in the overall interaction. Sequence n
are often omitted in sequence diagrams, in which the physical location of the arrow
the relative sequences, but they are necessary in collaboration diagrams. Sequence
are useful on both kinds of diagrams for identifying concurrent threads of control. A
sage may also be labeled with a guard condition.

Variation: Asynchronous. An asynchronous message is drawn with a half-arrowhea
(one with only one wing instead of two).

Variation: Call. A procedure call is drawn as a full arrowhead. A return is shown as a
verse tick mark (short transverse line) slightly before the end of the line near the tar
the return. A call that immediately returns (without any subordinate structure) ma
shown as a single line with an arrowhead and a tick mark.
70 UML v 1.0, Notation Guide

Sequence Diagrams

it at
sing

ontrol
ielding

ation
rity of
 This is
 arrive,
n) then
ow tail.

each
tually

n itera-
 times.
ottom
 part of
 so that

 high-

iagram
 time at
 in not

n name
argin
 arrow
signate

e indi-
Variation: In a procedural flow of control, the return arrow may be omitted (it is implic
the end of an activation). For nonprocedural flow of control (including parallel proces
and asynchronous messages) returns should be shown explicitly.

Variation: In a concurrent system, a full arrowhead shows the yielding of a thread of c
(wait semantics) and a half arrowhead shows the sending of a message without y
control (no-wait semantics).

Variation: Normally message arrows are drawn horizontally. This indicates the dur
required to send the message is “atomic”, that is, it is brief compared to the granula
the interaction and that nothing else can “happen” during the message transmission.
the correct assumption within many computers. If the message requires some time to
during which something else can occur (such as a message in the opposite directio
the message arrow may be slanted downward so that the arrowhead is below the arr

Variation: Branching. A branch is shown by multiple arrows leaving a single point,
labeled by a guard condition. Depending on whether the guard conditions are mu
exclusive, the construct may represent conditionality or concurrency.

Variation: Iteration. A connected set of messages may be enclosed and marked as a
tion. For a scenario, the iteration indicates that the set of messages can occur multiple
For a procedure, the continuation condition for the iteration may be specified at the b
of the iteration. If there is concurrency, then some messages in the diagram may be
the iteration and others may be single execution. It is desirable to arrange a diagram
the messages in the iteration can be enclosed together easily.

Variation: A lifeline may subsume an entire set of objects on a diagram representing a
level view.

6.5 TRANSITION TIMES

6.5.1 Notation

A transition instance (such as a message in a sequence diagram or a collaboration d
or a transition in a state machine) may be given a name. The name represents the
which a message is sent (example: A). In cases where the delivery of the message
instantaneous, the time at which the message is received is indicated by the transitio
with a prime sign appended (example: A’). The name may be shown in the left m
aligned with the arrow (on a sequence diagram) or near the tail of the message flow
(on a collaboration diagram). This name may be used in constraint expressions to de
the time the message was sent. If the message line is slanted, then the primed-nam
cates the time at which the message is received.
UML v 1.0, Notation Guide 71

Sequence Diagrams

nce dia-
Constraints may be specified by placing Boolean expressions in braces on the seque
gram.

6.5.2 Example

See Figure 30.
72 UML v 1.0, Notation Guide

Collaboration Diagrams

terac-
gram
m does
ncurrent

ll inter-
 impor-
se or a
 a con-

A col-
re of

; and a
 work.

t is
ica-

e their
s the

lso be
tion (via
ollab-
e the
larity

tedly in
ships,
meters

. Such
n
g design
7. COLLABORATION DIAGRAMS

A collaboration diagram shows an interaction organized around the objects in the in
tion and their links to each other. Unlike a sequence diagram, a collaboration dia
shows the relationships among the objects. On the other hand, a collaboration diagra
not show time as a separate dimension, so the sequence of messages and the co
threads must be determined using sequence numbers.

7.1 COLLABORATION

7.1.1 Semantics

Behavior is implemented by sets of objects that exchange messages within an overa
action to accomplish a purpose. To understand the mechanisms used in a design, it is
tant to see only the objects and the messages involved in accomplishing a purpo
related set of purposes, projected from the larger system of which they are part. Such
struct is called a collaboration.

A collaboration is a modeling unit that describes a set of interactions among types.
laboration involves two kinds of model constructs: a description of the static structu
the affected objects, including their relevant relationships, attributes, and operations
description of the sequences of messages exchanged among the objects to perform
The first aspect is called the context supplied by the collaboration; the second aspec
called the interactions supported by the collaboration. Both are needed for a full specif
tion of behavior, but each can be used separately for some design purposes.

A collaboration may be attached to a type, an operation, or a use case to describ
external effects; this is a not an implementation but a specification that describe
changes in the external environment caused by the item. A collaboration may a
attached to a class, to a method (an implemented operation), or to a use case realiza
an «implements» refinement) to describe how they are implemented internally; this c
oration shows the internal constituents of the item and how they interact to achiev
desired external behavior. A collaboration used for implementation is at a finer granu
than one used for specification of the same item.

A parameterized collaboration represents a design construct that can be used repea
different designs. The participants in the collaboration, including the classes, relation
attributes, and operations can be parameters of the generic collaboration. The para
are bound to particular model elements in each instantiation of generic collaboration
a parameterized collaboration is called a design pattern. Whereas most collaborations ca
be anonymous because they are attached to a named entity, patterns are free standin
constructs and must have names.
UML v 1.0, Notation Guide 73

Collaboration Diagrams

d col-
ty.

s par-
often
ral and
es in a

cific pur-
on-

r this
view a
 iden-

 dotted
ration
 object
led by
ontext
A collaboration may be expressed at different levels of granularity. A coarse-graine
laboration may be refined to produce another collaboration that has a finer granulari

7.1.2 Notation

The description of a collaboration involves two aspects: the structural description of it
ticipants and the behavioral description of its execution. The two aspects are
described together on a single diagram but at times it is useful to describe the structu
behavioral aspects separately. The description of the structure of objects playing rol
collaboration and their relationships is called a context. The description of the dynamic
behavior of the message sequences exchanged among objects to accomplish a spe
pose is called an interaction. The remainder of this chapter discusses the notation for c
texts and interactions.

7.2 DESIGN PATTERN

A collaboration can be used to specify the implementation of design constructs. Fo
purpose it is necessary to specify its context and interactions. It is also possible to
collaboration as a single entity from the “outside.” For example, this could be used to
tify the presence of design patterns within a system design.

7.2.1 Notation

A collaboration (as a complete entity representing a design pattern) is shown as a
ellipse containing the name of the pattern. A dotted arrow is drawn from the collabo
symbol to each of the objects or classes (depending on whether it appears within an
diagram or a class diagram) that participate in the collaboration. Each arrow is labe
the role of the participant. The roles correspond to the names of elements within the c
74 UML v 1.0, Notation Guide

Collaboration Diagrams

hat are

r pur-
mplete
 A con-
l that

tents,
eded to
 on the

tly dif-
ships
 a pro-
 the
for the collaboration; such names in the collaboration are treated as parameters t
bound to specify elements on each occurrence of the pattern within a model.

Figure 32. Occurrence of a pattern

7.3 CONTEXT

A context is a view of one or more modeling elements that are related for a particula
pose, such as performing an operation. A context may be a projection from a more co
model, from which details irrelevant to the particular purpose have been suppressed.
text is not itself a modeling element; it is the term for the fragment of the static mode
underlies a collaboration.

7.3.1 Semantics

A context is a model fragment that shows one or more classes together with their con
associations, and neighbor classes, plus additional relationships and classes as ne
define operations on the class. Any classes not shown are not affected by operations
class (or by a particular operation).

Since each context shows a local view of the entire system, classes may appear sligh
ferently in different contexts. Each context may show the attributes and relation
important to its purposes and suppress the others. Ultimately each context must be
jection from a consistent model of the entire system, but within a single local view
scope of each element in the context is not specified.

Observer

ThermometerIcon
handler

CallQueue subject

queue: List of Call
source: Object
waitAlarm: Alarm

reading: Real
color: Color
range: Interval

handler.reading = length (subject.queue)

capacity: Integer

range = (0 .. capacity)
UML v 1.0, Notation Guide 75

Collaboration Diagrams

 links.
n is a

collab-
m:

ually
w. The
bjects
s the
 may be
e oper-
volved
ration,

hen
related
 imple-

ecifica-
 that

 it may
cts in
d as a
after”
thy

ntext are
s on a

ontext
are rel-
s, each
at dif-
del of
om the
7.3.2 Notation

The context of a collaboration is shown as an object diagram—a graph of objects and
The names of the objects represent their roles within the collaboration. A collaboratio
prototype, so the objects in its context are also prototypes; in each execution of the
oration they are bound to actual objects. There are several ways to show the diagra

Methods. If the collaboration shows the implementation of an operation, then it is us
drawn as a separate collaboration diagram including both context and message flo
context for the operation includes the target object of the operation and any other o
that it calls on, directly or indirectly, to implement the operation. The context include
objects present before the operation, the objects present after the operation (these
the same or mostly the same as the ones before), and objects that exist only during th
ation; these may be marked as «new», «destroyed», and «transient». Only objects in
in the operation implementation need be shown. To show the execution of the ope
message flows are superimposed on the context objects (see Section 7.10).

Types and operations. If the collaboration shows the definition of a type as a whole, t
its context is an object diagram that shows the constituents of the type together with
objects affected by operations on the type. Because a type does not have operation
mentation, there are no message flows. Instead the collaboration is a declarative sp
tion of the behavior of the type. It may contain a list of invariants, that is, constraints
remain true in spite of the performance of operations on the type. For each operation,
contain a declarative specification of the operation in terms of the values of the obje
the type context: the value of each object after performing an operation is specifie
function of the values of the set of objects before performing the operation (a “before-
specification). Such specifications may be shown on the diagram, but often they are leng
and are stored in the background, accessible by hidden hyperlinks.

In both cases the usual assumption is that objects and classes not shown on the co
not affected by the operation. (It is not always safe to assume that all of the object
context diagram are used by the operation, however.)

Different contexts may be devised for the same type for different purposes. Each c
may have a somewhat different set of attributes, operators, and related objects that
evant to each purpose. Inasmuch as actual operations often fall into related group
context might specify a consistent view shared by several operations that is somewh
ferent from the view needed by other operations on the same type. Similarly, the mo
types in a business organization can often be divided into several contexts, each fr
point of view of a particular stakeholder.
76 UML v 1.0, Notation Guide

Collaboration Diagrams

 oper-
, as well
mes-

sage
e, such
ary to
. Then
descrip-
ed by
e exe-
7.3.3 Example

Figure 33. Type definition using context and before-after conditions

7.4 INTERACTIONS

A collaboration of objects interacts to accomplish a purpose (such as performing an
ation) by exchanging messages. The messages may include both signals and calls
as more implicit interaction through conditions and time events. A specific pattern of
sage exchange to accomplish a specific purpose is called an interaction.

7.4.1 Semantics

An interaction is a behavioral specification that comprises a sequence of mes
exchanges among a set of objects within a context to accomplish a specific purpos
as the implementation of an operation. To specify an interaction, it is first necess
specify a context, that is, the establish the objects that interact and their relationships
the possible interaction sequences are specified. These can be specified in a single
tion containing conditionals (branches or conditional signals), or they can be specifi
supplying multiple descriptions, each describing a particular path through the possibl
cution paths.

Product

price: Money

Item

quantity: Integer
cost: Money
{ cost =
quantity *
product.price }

Sale

total: Money
{ total =
sum (items.cost) }

product

*
1 *

*
items

{ordered}
1

currentSale
0..1 allSales

*

«type»
CashRegister

{ currentSale ∈ allSales }
startSale () — a new sale becomes the current sale
addItem (Product, quantity) — a new Item becomes the last item in the currentSale
deleteLastItem () — the last item of the current sale has been deleted
closeSale () — the current sale has been made the last sale in the allSales sequence
listSaleHistory ()
UML v 1.0, Notation Guide 77

Collaboration Diagrams

iagram
ow the
butes,
grams
ce of
s are

ction,
ey are
g sec-

ssage
e per-
 oper-
 during
may be
ted as

nated as

mbol.
r 1. For
nce with
current

).
7.4.2 Notation

Interactions are shown as sequence diagrams or as collaboration diagrams. Both d
formats show the execution of collaborations. However, sequence diagrams only sh
participating objects and do not show their relationships to other objects or their attri
therefore they do not fully show the context aspect of a collaboration. Sequence dia
do show the behavioral aspect of collaborations explicitly, including the time sequen
message and explicit representation of method activations. Sequence diagram
described in Chapter 6. Collaboration diagrams show the full context of an intera
including the objects and their relationships relevant to a particular interaction, so th
often better for design purposes. Collaboration diagrams are described in the followin
tions.

7.5 COLLABORATION DIAGRAM

7.5.1 Notation

A collaboration diagram is a context, that is, a graph of objects and links with me
flows attached to its links. The context of the diagram shows the objects relevant to th
formance of an operation, including objects indirectly affected or accessed during the
ation. The context for an operation includes its arguments and local variables created
its execution as well as ordinary associations. Objects created during the execution
designated as «new»; objects destroyed during the execution maybe designa
«destroyed»; objects created during the execution and then destroyed may be desig
«transient».

The invoker of an interaction may be shown on a collaboration diagram as an actor sy
The internal messages that implement an operation are number starting with numbe
a procedural flow of control the subsequent message numbers are nested in accorda
call nesting. For a nonprocedural sequence of messages exchanged among con
objects all the sequence numbers are at the same level (that is, they are not nested
78 UML v 1.0, Notation Guide

Collaboration Diagrams

l ele-

ing the

ackage
7.5.2 Example

Figure 34. Collaboration diagram

7.6 OBJECT

7.6.1 Notation

(The object notation is derived from the class notation by underlining instance-leve
ments, as explained in the general comments in Section 3.1.)

An object is shown as a rectangle with two compartments.

The top compartment shows the name of the object and its class, all underlined, us
syntax:

objectname : classname

The classname can include a full pathname of enclosing package, if necessary. The p
names precede the classname and are separated by double colons. For example:

display_window: WindowingSystem::GraphicWindows::Window

:Controller

wire: Wire

1: displayPositions(window)

left: Bead

wire

redisplay()
:Window

i-1 i

right: Bead

1.1.1b: r1:=position()1.1.1a: r0 := position()

1.1.2: create(r0,r1)

window

«parameter»window

1.1*(i=1..n): drawSegment(i) :Line {new}
«local»line

1.1.3: display(window)

1.1.3.1: add(self)

 contents {new}

∗

«self»

 {temp}

 {temp}
UML v 1.0, Notation Guide 79

Collaboration Diagrams

ing) or
reotype

t. Each

.

value
gram-

e class
lation-

 list of
l (the
t more

n dia-
ples of

 run
 UML
A stereotype for the class may be shown textually (in guillemets above the name str
as an icon in the upper right corner. The stereotype for an object must match the ste
for its class.

The second compartment shows the attributes for the object and their values as a lis
value line has the syntax:

attributename : type = value

The type is redundant with the attribute declaration in the class and may be omitted

The value is specified as a literal value. UML does not specify the syntax for literal
expressions but it is expected that a tool will specify such a syntax using some pro
ming language.

7.6.2 Presentation options

The name of the object may be omitted. In this case the colon should be kept with th
name. This represents an anonymous object of the given class given identity by its re
ships.

The class of the object may be suppressed (together with the colon).

The value compartment as a whole may be suppressed.

Attributes whose values are not of interest may be suppressed.

Attributes whose values change during a computation may show their values as a
values held over time. This is a good opportunity for the use of animation by a too
values would change dynamically). An alternate notation is to show the same objec
than once with a «becomes» relationship between them.

7.6.3 Style guidelines

Objects may be shown on (static) object diagrams as well as (dynamic) collaboratio
grams and sequence diagrams. Static object diagrams serve mainly to show exam
data structures.

7.6.4 Variations

For a language such as Self in which operations can be attached to individual objects at
time, a third compartment containing operations would be permissible, although the
does not currently support those semantics.
80 UML v 1.0, Notation Guide

Collaboration Diagrams

 is an
e class

 object
 lower
alues.
posite

 may be
be sup-
7.6.5 Example

Figure 35. Objects

7.7 COMPOSITE OBJECT

A composite object represents a high-level object made of tightly-bound parts. This
instance of a composite class, which implies the composition aggregation between th
and its parts.

7.7.1 Notation

A composite object is shown as an object symbol. The name string of the composite
is placed in a compartment near the top of the rectangle (as with any object). The
compartment holds the parts of the composite object instead of a list of attribute v
(However, even a list of attributes values may be regarded as the parts of a com
object, so there is not such a difference.)

7.7.2 Presentation options

The contents of a composite object may be suppressed and messages to the parts
subsumed to the composite object itself. Internal messages among the parts may
pressed in such a high-level view.

triangle: Polygon

center = (0,0)
vertices = ((0,0),(4,0),(4,3))
borderColor = black
fillColor = white

triangle: Polygon

triangle

:Polygon

scheduler
UML v 1.0, Notation Guide 81

Collaboration Diagrams

m, but
iewed
.

ty. A
assive
ed.

with a
arts.
7.7.3 Style guidelines

Messages are normally shown either to the composite or to its parts on one diagra
they are not normally mixed on one diagram. In other words, the composite may be v
at two different levels of abstraction, but it is desirable to only use one level at a time

7.7.4 Example

Figure 36. Composite object

7.8 ACTIVE OBJECT

An active object is one that owns a thread of control and may initiate control activi
passive object is one that holds data but that does not initiate control. However, a p
object may send messages in the process of processing a request that it has receiv

7.8.1 Notation

An active object is an object that owns a thread of control. It is shown as an object
heavy border. Frequently active objects are shown as composites with embedded p

horizontalBar:ScrollBar

verticalBar:ScrollBar

awindow : Window

surface:Pane

title:TitleBar

moves

moves
82 UML v 1.0, Notation Guide

Collaboration Diagrams

bject

iation,
7.8.2 Example

Figure 37. Composite active object

7.9 LINKS

A link is a a tuple (list) of object references. In the most normal case, it is a pairing of o
references. It is an instance of an association.

7.9.1 Notation

A binary link is shown as a path between two objects. In the case of a reflexive assoc
it may involve a loop with a single object. See Association for details of paths.

job

:Factory
JobMgr

:Factory
Scheduler

currentJob
:TransferJob

:Factory Manager

1: start(job)

A2,B2 / 2: completed(job)

{local} job

:Oven:Robot

1 / A1: start(job)
1 / B1: start(job)

A2: completedB2: completed
UML v 1.0, Notation Guide 83

Collaboration Diagrams

n near
tance

mposi-

x.

ar-

sis)

ject.
e same
A rolename may be shown at each end of the link. An association name may be show
the path; if present, it is underlined to indicate an instance. Links do not have ins
names; they take their identity from the objects that they relate. Multiplicity is not shown
for links because they are instances. Other association adornments (aggregation, co
tion, navigation) may be shown on the link roles.

A qualifier may be shown on a link. The value of the qualifier may be shown in its bo

Implementation stereotypes. A stereotype may be attached to the link role to indicate v
ious kinds of implementation. The following stereotypes may be used:

«association» association (default, unnecessary to specify except for empha

«parameter» procedure parameter

«local» local variable of a procedure

«global» global variable

«self» self link (the ability of an object to send a message to itself)

N-ary link. An n-ary link is shown as a diamond with a path to each participating ob
The other adornments on the association and the adornments on the roles have th
possibilities as the binary link.

7.9.2 Example

Figure 38. Links

downhillSkiClub:Club Joe:Person

Jill:Person

Chris:Person

member

member

member

treasurer

officer

president

officer
84 UML v 1.0, Notation Guide

Collaboration Diagrams

ct to
cedure
 so on.

he link
 object.
eives

s:

ted
. May
on-
aits

ext
s, or

ead
cts.

e-

t

7.10 MESSAGE FLOWS

A message flow in the notation that shows the sending of a message from one obje
another. The implementation of a message may take various forms, such as a pro
call, the sending of a signal between active threads, the explicit raising of events, and

7.10.1 Notation

A message flow is shown as a labeled arrow placed near a link. The meaning is that t
is used to transport or otherwise implement the delivery of the message to the target
The arrow points along the link in the direction of the target object (the one that rec
the message).

Control flow type

The following arrowhead variations may be used to show different kinds of message

filled solid arrowhead
procedure call or other nested flow of control. The entire nes
sequence is completed before the outer level sequence resumes
be used with ordinary procedure calls. May also be used with c
currently active objects when one of them sends a signal and w
for a nested sequence of behavior to complete.

stick arrowhead
Flat flow of control. Each arrow shows the progression to the n
step in sequence without. May be combined with procedure call
procedure calls can be flattened into a linear sequence.

half stick arrowhead
asynchronous flow of control. Used instead of the stick arrowh
to explicitly show an asynchronous message between two obje

other variations
other kinds of control may be shown, such as “balking” or “tim
out”, but these are treated as extensions to the UML core

Message label. The label has the following syntax:

predecessor guard-condition sequence-expression return-value := message-name argument-lis
UML v 1.0, Notation Guide 85

Collaboration Diagrams

uencing
hing,

ed by

 It must

whose
message
nchro-

terms
 the

Each

evel of
at that
1.

l name
are con-
.

r more
:

teration
 itera-
guage;
The label indicates the message sent, its arguments and return values, and the seq
of the message within the larger interaction, including call nesting, iteration, branc
concurrency, and synchronization.

Predecessor. The predecessor is a comma-separated list of sequence numbers follow
a slash (‘/’):

sequence-number ‘,’ . . . ‘/’

The clause is omitted if the list is empty.

Each sequence-number is a sequence-expression without any recurrence terms.
match the sequence number of another message.

The meaning is that the message flow is not enabled until all of the message flows
sequence numbers are listed have occurred (a thread can go beyond the required
flow and the guard remains satisfied). Therefore the guard condition represents a sy
nization of threads.

Sequence expression. The sequence-expression is a dot-separated list of sequence-
followed by a colon (‘:’). Each term represents a level of procedural nesting within
overall interaction. If all the control is concurrent, then nesting does not occur.
sequence-term has the following syntax:

[integer | name] [recurrence]

The integer represents the sequential order of the message within the next higher l
procedural calling. Messages that differ in one integer term are sequentially related
level of nesting. Example: Message 3.1.4 follows message 3.1.3 within activation 3.

The name represents a concurrent thread of control. Messages that differ in the fina
are concurrent at that level of nesting. Example: message 3.1a and message 3.1b
current within activation 3.1. All threads of control are equal within the nesting depth

The recurrence represents conditional or iterative execution. This represents zero o
messages that are executed depending on the conditions involved. The choices are

‘*’ ‘[’ iteration-clause ‘]’ An iteration

‘[’ condition-clause ‘]’A branch

An iteration represents a sequence of messages at the given nesting depth. The i
clause may be omitted (in which case the iteration conditions are unspecified). The
tion-clause is meant to be expressed in pseudocode or an actual programming lan
UML does not prescribe its format. An example would be: *[i := 1..n].
86 UML v 1.0, Notation Guide

Collaboration Diagrams

he con-
ual pro-
y].

k of it

equen-
ation

return

ssage
sed as
he return

n the
 ways,
is the
iver or

ceiving
nd the

losed
ent is an
ot pre-
 scope)

d links

wn near
 value

pposite
e choice
A condition represents a message that whose execution is contingent on the truth of t
dition clause. The condition-clause is meant to be expressed in pseudocode or an act
gramming language; UML does not prescribe its format. An example would be: [x >

Note that a branch is notated the same as an iteration without a star; one might thin
as an iteration restricted to a single occurrence.

The iteration notation assumes that the messages in the iteration will be executed s
tially. There is also the possibility of executing them concurrently. The tentative not
for this is to follow the star by a double vertical line (for parallelism): *||.

Signature. A signature is a string that indicates the name, the arguments, and the
value of an operation, message, or signal. These have the following properties:

Return-value. This is a list of names that designates the values returned by the me
within the subsequent execution of the overall interaction. These identifiers can be u
arguments to subsequent messages. If the message does not return a value, then t
value and the assignment operator are omitted.

Message-name. This is the name of the event raised in the target object (which is ofte
event of requesting an operation to be performed). It may be implemented in various
one of which is an operation call. If it is implemented as a procedure call, then this
name of the operation and the operation must be defined on the class of the rece
inherited by it. In other cases it may be the name of an event that is raised on the re
object. In normal practice with procedural overloading, both the message name a
argument list types are required to identify a particular operation.

Argument list. This is a comma-separated list of arguments (actual parameters) enc
in parentheses. The parentheses can be used even if the list is empty. Each argum
expression in pseudocode or an appropriate programming language (UML does n
scribe). The expressions may use return values of previous messages (in the same
and navigation expressions starting from the source object (that is, attributes of it an
from it and paths reachable from them).

7.10.2 Presentation options

Instead of text expressions for arguments and return values, data tokens may be sho
a message. A token is a small circle labeled with the argument expression or return
name; it has a small arrow on it that points along the message (for an argument) or o
the message (for a return value). Tokens represent arguments and return values. Th
of text syntax or tokens is a presentation option.
UML v 1.0, Notation Guide 87

Collaboration Diagrams

ing lan-
se the

me are

may be

. For
 ani-
 at var-
The syntax of messages may instead be expressed in the syntax of a programm
guage, such as C++ or Smalltalk. All of the expressions on a single diagram should u
same syntax, however.

7.10.3 Example

See Figure 34 for examples within a diagram.

Samples of control message label syntax:

2: display (x, y)simple message

1.3.1: p:= find(specs)nested call with return value

[x < 0] 4: invert (x, color)conditional message

A3,B4/ C3.1*: update ()synchronization with other threads, iteration

7.11 CREATION/DESTRUCTION MARKERS

During the execution of an interaction some objects and links are created and so
destroyed. The creation and destruction of elements can be marked.

7.11.1 Notation

An object or link that is created during an interaction has the keyword new as a constraint.
An object or link that is destroyed during an interaction has the keyword destroyed as a con-
straint. The keyword may be used even if the element has no name. Both keywords
used together, but the keyword transient may be used in place of new destroyed.

7.11.2 Presentation options

Tools may use other graphic markers in addition to or in place of the keywords
example, each kind of lifetime might be shown in a different color. A tool may also use
mation to show the creation and destruction of elements and the state of the system
ious times.

7.11.3 Example

See Figure 34.
88 UML v 1.0, Notation Guide

State Diagram

 through
.

David
n the

es con-
gh the
8. STATE DIAGRAM

A state diagram shows the sequences of states that an object or an interaction goes
during its life in response to received stimuli, together with its responses and actions

The semantics and notation described in this chapter are substantially those of
Harel’s statecharts with some minor modifications. His work was a major advance o
traditional flat state machines.

8.1 STATE DIAGRAM

8.1.1 Notation

A state diagram is a bipartite graph of states and transitions. It is also a graph of stat
nected by physical containment and tiling. The entire state diagram is attached (throu
model) to a class or a method (an operation implementation).

Figure 39. State diagram

DialTone
Dialing

Talking
Ringing

Busy

dial digit(n)

connected

callee answers

Idle

busy

lift
receiver

caller
hangs up

callee
hangs up

Active

dial digit(n)

/get dial tone

do/ play busy
tone

do/ play ringing
tone/enable speech

/disconnect

do/ play dial tone

Pinned

callee
answers

Connecting

dial digit(n)[valid]

Timeout
do/ play message

dial digit(n)[invalid]

/connect

phone #

Invalid
do/ play message

[incomplete]15 sec.
15 sec.
UML v 1.0, Notation Guide 89

State Diagram

sfies
a state

iven
 when
termi-
vent.

tion or

to the
 repre-
on-

 “com-

mpart-

 names
 name
sed for

e state
l value
es of
oming
 they

hile
8.2 STATES

8.2.1 Semantics

A state is a condition during the life of an object or an interaction during which it sati
some condition, performs some action, or waits for some event. An object remains in
for a finite (non-instantaneous) time.

An internal “do” action is an ongoing process performed while the object is in the g
state. The action need not be atomic; it is interruptible by outside events. It is initiated
the state is entered (after any incoming transition actions and entry actions). It may
nate by itself, in which case the termination represents an implicit “action complete” e
Otherwise it is externally terminated whenever the state is exited (before any exit ac
outgoing transition actions). Nested state machines are equivalent to do-actions.

Each subregion of a state may have initial states and final states. A transition
enclosing state represents a transition to the initial state. A transition to a final state
sents the completion of activity in the enclosing region; completion of activity in all c
current regions represents completion of activity by the enclosing state and triggers a
pletion of activity” event” on the enclosing state.

8.2.2 Notation

A state is shown as a rectangle with rounded corners. It may have one or more co
ments. The compartments are all optional. They are as follows:

Name compartment. Holds the (optional) name of the state as a string. States without
are “anonymous” and are all distinct. Two state symbols with the same non-empty
designate the same state; multiple symbols with the same state name might be u
graphical convenience to avoid routing lines to a single state symbol.

State variable compartment. Holds a list of state variables that are defined within th
or any of its nested substates. State variables have the form of attributes. Their initia
expressions may include attributes or links of the owning object, state variabl
enclosing states, and parameters of incoming transitions (if they appear on all inc
paths). State variable are attributes of the owning class but are distinguished because
are affected by or used by actions in the state diagram.

Internal activity compartment. Holds a list of internal actions or activities performed w
the object is in the state. These have the format:

event-name argument-list ‘/’ action-expression
90 UML v 1.0, Notation Guide

State Diagram

.

cannot

tates,
ns (if

ed in
er way.

ay be
Each event name or pseudo-event name may appear at most once in a single state

The following special actions have the same form but represent reserved words that
be used for event names:

‘entry’ ‘/’ action-expressionAn atomic action performed on entry to the state

‘exit’ ‘/’ action-expressionAn atomic action performed on exit from the state

‘do’ ‘/’ action-expressionAn ongoing action performed while in the state.

Action expressions may use state variables of the current or enclosing s
attributes and links of the owning object, and parameters of incoming transitio
they appear on all incoming paths).

8.2.3 Example

Figure 40. State

8.3 SUBSTATES

A state can be refined using and-relationships into concurrent substates or using or-rela-
tionships into mutually exclusive disjoint substates. A given state may only be refin
one of these two ways. Its substates can may be refined in the same way or the oth

A newly-created object starts in its initial state. The event that creates the object m
used to trigger a transition from the initial state symbol.

An object that transitions to its outermost final state ceases to exist.

Typing Password

password: String = ""
fails: Integer = 0

help / display help

entry / set echo invisible
exit / set echo normal
do / echo typing
UML v 1.0, Notation Guide 91

State Diagram

, state
mpart-
nce, the

ion of
nt sub-

 diagram
e con-

iagram

sition

itial
 to the
ition to
he ini-
ay not

ull’s
n

sequent
tion of
ple-
8.3.1 Notation

An expansion of a state shows its fine structure. In addition to the (optional) name
variable, and internal transition compartments, the state may have an additional co
ment that contains a region holding a nested diagram. For convenience and appeara
text compartments may be shrunk horizontally within the graphic region.

An expansion of a state into concurrent substates is shown by tiling the graphic reg
the state using dashed lines to divide it into subregions. Each subregion is a concurre
state. Each subregion may have an optional name and must contain a nested state
with disjoint states. The text compartments of the entire state are separated from th
current substates by a solid line.

An expansion of a state into disjoint substates is shown by showing a nested state d
within the graphic region.

An ongoing “do” action should not be specified in an enclosing state, as the decompo
of the state into substates shows its internal behavior.

An initial (pseudo)state is shown as a small solid filled circle. A transition from an in
state may be labeled with the name of an event; if so, it represents a transition
enclosing state triggered by the given event. If it is unlabeled, it represents any trans
the enclosing state (and is therefore incompatible with another labeled initial state). T
tial transition may have an action. The initial state is a notational device; an object m
be in such a state but must transition to an actual state.

A final (pseudo)state is shown as a circle surrounding a small solid filled circle (a b
eye). It may be labeled by a send-event-expression; if so, it represents the occurrence of a
event at the level of the enclosing state. (In effect, reaching the state causes a sub
transition on the enclosing state.) If the state is unlabeled, it represents the comple
activity in the enclosing state which triggers any transition on the implicit activity com
tion event.
92 UML v 1.0, Notation Guide

State Diagram
8.3.2 Example

Figure 41. Sequential substates

Figure 42. Concurrent substates

Start

do / play dial tone

Partial Dial

entry/number.append(n)

digit(n)

digit(n)

[number.isValid()]

^ dialedNumber(number)

Dialing

number: String = “”

Lab1 Lab2

Term

lab done

project done

Passed

Incomplete

Project

Final pass

Test

Failed
fail

lab
done

Taking Class
UML v 1.0, Notation Guide 93

State Diagram

t is an
neces-

ssion).

amed

ents as

ntry of
as time

 in state

iagram.
 another
epends

g time)
f time
8.4 EVENTS

8.4.1 Semantics

An event is a noteworthy occurrence. For practical purposes in state diagrams, i
occurrence that may trigger a state transition. Events may be of several kinds (not
sarily mutually exclusive):

a designated condition becoming true (usually described as a boolean expre
These are notated as guard conditions on transitions without event names.

receipt of an explicit signal from one object to another. These are notated as n
events as triggers on transitions.

receipt of a call for an operation by an object. These are notated as named ev
triggers on transitions.

passage of a designated period of time after a designated event (often the e
the current state) or the occurrence of a given date/time. These are notated
expressions as triggers on transitions.

The event declaration has scope within the package it appears in and may be used
diagrams for classes that have visibility inside the package. An event is not local to a single
class.

8.4.2 Notation

A signal or call event can be defined using the following format:

event-name ‘(‘ comma-separated-parameter-list ‘)’

A parameter has the format:

parameter-name ‘:’ type-expression

A signal event can be specified using the «signal» stereotype of a class in a class d
The parameters are specified as attributes. A signal can be specified as a subclass of
signal. This indicates that an occurrence of the subevent triggers any transition that d
on the event or any of its ancestors.

An elapsed-time event can be specified as an expression that evaluates (at modelin
to an amount of time, such as “5 seconds”. By default, this indicates the amount o
94 UML v 1.0, Notation Guide

State Diagram

s, such

y be
ould
after the current state was entered. Other time events can be specified as condition
as [date = Jan. 1, 2000] or [10 seconds since exit from state A].

A condition becoming true is shown as a guard condition with no event. This ma
regarded as a continuous test for the condition until it is true, although in practice it w
only be checked on a change of values.

Events can be declared on a class diagram with the stereotype «event».

8.4.3 Example

Figure 43. Signal event declaration

user input
device

mouse

location

button
keyboard
character

character

IOevent

time

control graphic

punctuationalphanumericspace

mouse mouse
button
down

button
up

«signal»

«signal»

«signal» «signal»

«signal» «signal» «signal»

«signal» «signal»

«signal»

«signal»
UML v 1.0, Notation Guide 95

State Diagram

e first
ecified
ition is
ansi-
on the
ne at a
 than
y is

e

trig-

ition
t and
n, that

e con-

 order
er.

cts.
8.5 SIMPLE TRANSITIONS

8.5.1 Semantics

A simple transition is a relationship between two states indicating that an object in th
state will enter the second state and perform certain specified actions when a sp
event occurs if specified conditions are satisfied. On such a change of state the trans
said to “fire”. The trigger for a transition is the occurrence of the event labeling the tr
tion. The event may have parameters, which are available within actions specified
transition or within actions initiated in the subsequent state. Events are processed o
time. If an event does not trigger any transition, it is simply ignored. If it triggers more
one transition, only one will fire; the choice may be nondeterministic if a firing priorit
not specified.

8.5.2 Notation

A transition is shown as a solid arrow from one state (the source state) to another state (th
target state) labeled by a transition string. The string has the following format:

event-signature ‘[’ guard-condition] ‘/’ action-expression ‘^’ send-clause

The event-signature describes an event with its arguments:

event-name ‘(‘ parameter ‘,’ . . . ‘)’

The guard-condition is a Boolean expression written in terms of parameters of the
gering event and attributes and links of the object that owns the state machine.

The action-expression is a procedural expression that is executed if and when the trans
fires. It may be written in terms of operations, attributes, and links of the owning objec
the parameters of the triggering event. The action-clause must be an atomic operatio
is, it may not be interruptible; it must be executed entirely before any other actions ar
sidered. The transition may contain more than one action clause (with delimiter).

‘The send-clause is a special case of an action, with the format:

destination-expression ‘.’ destination-event-name ‘(‘ argument ‘.’ . . . ‘)’

The transition may contain more than one send clause (with delimiter). The relative
of action clauses and send clauses is significant and determines their execution ord

The destination-expression is an expression that evaluates to an object or a set of obje
96 UML v 1.0, Notation Guide

State Diagram

(s).

rs of

 they

s a syn-
 sub-

 tran-
s and
omes in
 state

abled.
 when
t occur-
nt.

r more
r

s.
The destination-event-name is the name of an event meaningful to the destination object

The destination-expression and the arguments may be written in terms of the paramete
the triggering event and the attributes and links of the owning object.

Transition times. Names may be placed on transitions to designate the times at which
fire. See the section on transition times within Section 6.5.

8.5.3 Example

right-mouse-down (location) [location in window] / object := pick-object (location)
^ object.highlight ()

8.6 COMPLEX TRANSITIONS

A general transition may have multiple source states and target states. It represent
chronization and/or a splitting of control into concurrent threads without concurrent
states.

8.6.1 Semantics

If the owning object is concurrently in all of the source states of a transition, then the
sition is enabled. If the guard condition for the transition is true, then the transition fire
performs its actions. Then the object ceases to be in all of the source states and bec
all of the target states. Normally this involves crossing out of or into a concurrent
region.

Normally all of the source states must be occupied before a complex transition is en
In more complicated situations, the guard condition may be expanded to permit firing
some subset of the states is occupied. Note that the concept of simultaneous even
rence is nonphysical and is not supported; each transition is enabled by a single eve

8.6.2 Notation

A complex transition is shown as a short heavy vertical bar. The bar may have one o
solid arrows from states to the bar (these are the source states); the bar may have one o
more solid arrows from the bar to states (these are the destination states). A transition string
may be shown near the bar. Individual arrows do not have their own transition string
UML v 1.0, Notation Guide 97

State Diagram

 each
when

states
ransi-

 state.
e ini-
n indi-

esting
. On a
n bar
art with
8.6.3 Example

Figure 44. Complex transition

8.7 TRANSITIONS TO NESTED STATES

8.7.1 Semantics

A transition to a complex state is equivalent to a transition to the initial state of it (or of
of its concurrent subregions if it is concurrent). The entry action is always performed
a state is entered from outside.

A transition from a complex state indicates a transition that applies to each of the
within the state region (at any depth); it is “inherited” by the nested states. Inherited t
tions can be masked by the presence of nested transitions with the same trigger.

8.7.2 Notation

A transition drawn to a complex state boundary indicates a transition to the complex
This is equivalent to a transition to the initial state within the complex state region; th
tial state must be present. If the state is a concurrent complex state, then the transitio
cates a transition to the initial state of each of its concurrent substates.

Transitions may be drawn directly to states within a complex state region at any n
depth. All entry actions a performed for any states that are entered on any transition
transition within a concurrent complex state, transition arrows from the synchronizatio
may be drawn to one or more concurrent states; any other concurrent subregions st
their default initial states.

Setup Cleanup

A1 A2

B2B1
98 UML v 1.0, Notation Guide

State Diagram

plex
 their

esting
on any
 may
ates in

n
indi-
t have
bject
are per-

re sub-
ed tran-
e may
-
 con-
m final

te con-
uld not
wever.

ed then
mma-
event
A transition drawn from a complex state boundary indicates a transition of the com
state. If such a transition fires, any nested states are forcibly terminated and perform
exit actions, then the transition actions occur and the new state is established.

Transitions may be drawn directly from states within a complex state region at any n
depth to outside states. All exit actions are performed for any states that are exited
transition. On a transition from within a concurrent complex state, transition arrows
be specified from one or more concurrent states to a synchronization bar; specific st
the other regions are therefore irrelevant to triggering the transition.

A state region may contain a history state indicator shown as a small circle containing a
‘H’. The history indicator applies to the state region that directly contains it. A history
cator may have any number of incoming transitions from outside states. It may no
any outgoing transitions. If transition to the history indicator fires it indicates that the o
resumes the state it last had within the complex region; any necessary entry actions
formed.

8.7.3 Presentation options

Stubbed transitions. Nested states may be suppressed. Transitions to nested states a
sumed to the most specific visible enclosing state of the suppressed state. Subsum
sitions that do not come from an unlabeled final state or go to an unlabeled initial stat
(but need not) be shown as coming from or going to stubs. A stub is shown as a small ver
tical line drawn inside the boundary of the enclosing state. It indicates a transition
nected to a suppressed internal state. Stubs are not used for transitions to initial or fro
states.

Note that events should be shown on transitions leading into a state, either to the sta
tour or to an internal substate, including a transition to a stubbed state. Events sho
normally be shown on transitions leading from a stubbed state to an external state, ho
Think of a transition as belonging to its source state; if the source state is suppress
so are the details of the transition. Note also that a transition from a final state is su
rized by an unlabeled transition from the complex state contour (denoting the implicit
“action complete” for the corresponding state).
UML v 1.0, Notation Guide 99

State Diagram
8.7.4 Example

See Figure 42 for an example of complex transitions.

Figure 45. Stubbed transitions

Figure 46. History indicator

A C

A C

B
D

E

F

p s

t

B

r

p

r

D

W

W

may be abstracted as

u

s

s

A C

H

A1

A2

interrupt

resume
100 UML v 1.0, Notation Guide

State Diagram

t can be
n object,

 objects.

 7.10 for

ow from
 that the
 arrow
ception
nting a
in an
ct
 the col-

 This

fe, but

 mes-
nding
ot be

ession

 the
y the
8.8 SENDING MESSAGES

8.8.1 Semantics

Messages are sent by an action in an object to a target set of objects; the target se
degenerate as a single object or the entire system. The sender can be subsumed to a
a composite object, or a class.

8.8.2 Notation

See Section 8.5 for the text syntax of sending messages that cause events for other

Sending such a message can also be shown visually. See Section 6.4 and Section
details of showing messages in sequence diagrams and collaboration diagrams.

Sending a message between state diagrams may be shown by drawing a dashed arr
the sender to the receiver. Messages must be sent between objects, so this means
diagram must be some form of object diagram containing objects (not classes). The
is labeled with the event name and arguments of the event that is caused by the re
of the event. Each state diagram must be contained within an object symbol represe
collaborating object; graphically the state diagrams may be nested physically with
object symbol, or the object enclosing one state diagram may be implicit (being the obje
owning the main state diagram at issue). The state diagrams represent the states of
laborating objects.

The sender symbol may be one of:

A transition. The message is sent as part of the action of firing the transition.
is an alternate presentation to the text syntax for sending messages.

An object. The message is sent by an object of the class at some point in its li
the details are unspecified.

The receiver may be one of:

An object, including a class reference symbol containing a state diagram. The
sage is received by the object and may trigger a transition on the correspo
event. There may be many transitions involving the event. This notation may n
used when the target object is computed dynamically; in that case a text expr
must be used.

A transition. The transition must be the only transition in the object involving
given event, or at least the only transition that could possibly be triggered b
UML v 1.0, Notation Guide 101

State Diagram

transi-
ender.

lass-
 a mes-
event
 state
 new
particular sending of the message. This notation may not be used when the
tion triggered depends on the state of the receiving object and not just on the s

A class designation. This notation would be used to model the invocation of c
scope operations, such as the creation of a new instance. The receipt of such
sage causes the instantiation of a new object in its default initial state. The
seen by the receiver may be used to trigger a transition from its default initial
and therefore represents a way to pass information from the creator to the
object.
102 UML v 1.0, Notation Guide

State Diagram
8.8.3 Example

Figure 47. Sending messages

Controlling

OnOff

Controlling

Television

Remote Control

“power” button

TV VCR

^television.togglePower

toggle Power

“VCR”

“TV”

toggle Power

“power” button
^VCR.togglePower

togglePower

OnOff

VCR

toggle Power

toggle Power

toggle Power
UML v 1.0, Notation Guide 103

State Diagram

sition
ause a

e (from
ate not

to the
xecuted
he exit
Figure 48. Creating and destroying objects

8.9 INTERNAL TRANSITIONS

8.9.1 Semantics

An internal transition is a transition that remains within a single state rather than a tran
that involves two states. It represents the occurrence of an event that does not c
change of state. By analogy it is also used for the pseudoevents of entering the stat
any other state not nested in the particular state), exiting the state (to any other st
nested in the particular state), and performing an action while in the state.

Note that an internal transition is not equivalent to a self-transition from a state back
same state. The self-transition causes the exit and entry actions on the state to be e
and the initial state to be entered, whereas the internal transition does not invoke t
and entry actions and does not cause a change of state (including a nested state).

Unmoved

single move

capture

double move
En passant

opponent moves

Moved

create(file,rank=2)

[on 8th rank] ^piece.create(file,rank)
{where piece =
Queen, Rook, Bishop, or Knight}

AlivePawn

captured
104 UML v 1.0, Notation Guide

State Diagram

hown
tax of

8.5 for
8.9.2 Notation

An internal transition is attached to the state rather than a transition. Graphically it is s
as a text string within the internal transition compartment on a state symbol. The syn
an internal transition string is the same as for an external transition. See Section
details.

Figure 49. State with state variables and internal transitions

Typing Password

password: String = “”
fails: Integer = 0

help / display help
entry / set echo invisible
exit / set echo normal
UML v 1.0, Notation Guide 105

Activity Diagram

 of the
red by

ached
e. The

sed to
repre-
. Use
9. ACTIVITY DIAGRAM

9.1 ACTIVITY DIAGRAM

9.1.1 Notation

An activity diagram is a special case of a state diagram in which all (or at least most)
states are action states and in which all (or at least most) of the transitions are trigge
completion of the actions in the source states. The entire activity diagram is att
(through the model) to a class or to the implementation of an operation or a use cas
purpose of this diagram is to focus on flows driven by internal processing (as oppo
external events). Use activity diagrams in situations where all or most of the events
sent the completion of internally-generated actions (that is, procedural flow of control)
ordinary state diagrams in situations where asynchronous events occur.
106 UML v 1.0, Notation Guide

Activity Diagram
9.1.2 Example

Figure 50. Activity diagram

Get
Cups

Put Coffee
in Filter Add Water

to Reservoir

[found coffee]

[no coffee]Find
Beverage

Get cans
of cola

[no cola]

[found cola]

Put Filter
in Machine

Turn on
Machine

Person::Prepare Beverage

Brew coffee

Pour Coffee

Drink

^coffeePot.turnOn

light goes out
UML v 1.0, Notation Guide 107

Activity Diagram

going
sev-
ternal

is situ-
orithm

rcs on
ed

sitions
 may

nguage

ey are
ms.
9.2 ACTION STATE

9.2.1 Semantics

An action state is a shorthand for a state with an internal action and at least one out
transition involving the implicit event of completing the internal action (there may be
eral such transitions if they have guard conditions). Action states should not have in
transitions or outgoing transitions based on explicit events; use normal states for th
ation. The normal use of an action state is to model a step in the execution of an alg
(a procedure).

9.2.2 Notation

An action state is shown as a shape with straight top and bottom and with convex a
the two sides. The action-expression is placed in the symbol. The action expression ne
not be unique within the diagram.

Transitions leaving an action state should not include an event signature; such tran
are implicitly triggered by the completion of the action in the state. The transitions
include guard conditions and actions.

9.2.3 Presentation options

The action may be described by natural language, pseudocode, or programming la
code. It may use only attributes and links of the owning object.

Note that action state notation may be used within ordinary state diagrams but th
more commonly used with activity diagrams, which are special cases of state diagra

9.2.4 Example

Figure 51. Activities

matrix.invert (tolerance:Real) drive to work
108 UML v 1.0, Notation Guide

Activity Diagram

 guard
 condi-

rent

e, with
 a dis-
ne of

ng
its in
9.3 DECISIONS

A state diagram (and by derivation an activity diagram) expresses a decision when
conditions are used to indicate different possible transitions that depend on Boolean
tions of the owning object. UML provides shorthand for showing decisions.

9.3.1 Notation

A decision may be shown by labeling multiple output transitions of an action with diffe
guard conditions.

For convenience a stereotype is provided for a decision: the traditional diamond shap
one or more incoming arrows and with two or more outgoing arrows, each labeled by
tinct guard condition with no event trigger. All possible outcomes should appear on o
the outgoing transitions.

9.3.2 Example

Figure 52. Decision

9.4 SWIMLANES

Actions may be organized into swimlanes. Swimlanes are a kind of package for organizi
responsibility for activities within a class. They often correspond to organizational un
a business model.

[found coffee]

Calculate
total cost

[cost < $50] Charge
customer’s
account

Get
authoriation

[cost ≥ $50]
UML v 1.0, Notation Guide 109

Activity Diagram

igh-
ponsi-
ore

t indi-
 lanes;
9.4.1 Notation

An activity diagram may be divided visually into “swimlanes” each separated from ne
boring swimlanes by vertical solid lines on both sides. Each swimlane represents res
bility for part of the overall activity, and may eventually be implemented by one or m
objects. The relative ordering of the swimlanes has no semantic significance but migh
cate some affinity. Each action is assigned to one swimlane. Transitions may cross
there is no significance to the routing of a transition path.

9.4.2 Example

Figure 53. Swimlanes in activity diagram

Request service

Take order

Fill order

Take order

Customer Sales Stockroom

Pay

Deliver order
110 UML v 1.0, Notation Guide

Activity Diagram

 kinds
jects

 be
a dis-
rent
 Section
ge is
ingle

 sym-
rrow is
output

rows
 that is
t.

activ-
eater
arance
 same
d to the
9.5 ACTION-OBJECT FLOW RELATIONSHIPS

Activities operate by and on objects. Two kinds of relationships can be shown: The
of objects that have primary responsibility for performing an action and the other ob
whose values are used or determined by the action.

9.5.1 Notation

Object responsible for an action. The object responsible for performing an action can
shown by drawing a lifeline and placing actions on lifelines Each lifeline represents
tinct object. There may be multiple lifelines for different objects of the same or diffe
kinds. If this approach is chosen, usually a sequence diagram should be used. See
6.1. If an object lifeline is not shown, then some object within the swimlane packa
responsible for the action but the object is not shown. Multiple actions within a s
swimlane can be handled by the same or different objects.

Object flow. Objects that are input to or output by an action may be shown as object
bols. A dashed arrow is drawn from an action to an output object, and a dashed a
drawn from an input object to its action. The same object may be (and usually is) the
of one action and the input of one or more subsequent activities.

The control flow (solid) arrows may be omitted when the object flow (dashed) ar
supply a redundant constraint. In other words, when an action produces an output
input by a subsequent action, that object flow relationship implies a control constrain

Object state. Frequently the same object is manipulated by a number of successive
ities. It is possible to show the arrows to and from all of the relevant activities. For gr
clarity, however, the object may be displayed multiple times on a diagram, each appe
denoting a different point during its life. To distinguish the various appearances of the
object, the state of the object at each point may be placed in brackets and appende
name of the object, for example, PurchaseOrder[approved].
UML v 1.0, Notation Guide 111

Activity Diagram

that
 activity
9.5.2 Example

Figure 54. Actions and object flow

9.6 OPTIONAL STEREOTYPES

The following stereotypes provide explicit symbols for certain kinds of information
can be specified on transitions. These stereotypes are not necessary for constructing
diagrams but some users may prefer the added impact that they provide.

Request service

Take order

Fill order

Collect order

Customer Sales Stockroom

Pay

Deliver order

Order
[entered]

Order
[filled]

Order
[delivered]

Order
[placed]
112 UML v 1.0, Notation Guide

Activity Diagram

s like
nal is
ction
gon to
 arrow
der of

s like
nal is
ction
gon to

dashed
w the
9.6.1 Stereotypes

Signal receipt. The receipt of a signal may be shown as a concave pentagon that look
a rectangle with a triangular notch in its side (either side). The signature of the sig
shown inside the symbol. A unlabeled transition arrow is drawn from the previous a
state to the pentagon and another unlabeled transition arrow is drawn from the penta
the next action state. This symbol replaces the event label on the transition. A dashed
may be drawn from an object symbol to the notch on the pentagon to show the sen
the signal; this is optional.

Signal sending. The sending of a signal may be shown as a convex pentagon that look
a rectangle with a triangular point on one side (either side). The signature of the sig
shown inside the symbol. A unlabeled transition arrow is drawn from the previous a
state to the pentagon and another unlabeled transition arrow is drawn from the penta
the next action state. This symbol replaces the send-signal label on the transition. A
arrow may be drawn from the point on the pentagon to an object symbol to sho
receiver of the signal; this is optional.

Figure 55. Stereotypes for signal receipt and sending

Turn on
Machine

Brew coffee

Pour Coffee

turnOn

light goes out

coffeePot
UML v 1.0, Notation Guide 113

Implementation Diagrams

ucture
rams
he run-

luding
oftware
ile time,
me. A
com-

onent

nships.
senting

mpiler
ponent

are lan-

compo-
10. IMPLEMENTATION DIAGRAMS

Implementation diagrams show aspects of implementation, including source code str
and run-time implementation structure. They come in two forms: component diag
show the structure of the code itself and deployment diagrams show the structure of t
time system.

10.1 COMPONENT DIAGRAMS

10.1.1 Semantics

A component diagram shows the dependencies among software components, inc
source code components, binary code components, and executable components. A s
module may be represented as a component type. Some components exist at comp
some exist at link time, and some exist at run time; some exist at more than one ti
compile-only component is one that is only meaningful at compile time; the run-time
ponent in this case would be an executable program.

A component diagram has only a type form, not an instance form. To show comp
instances, use a deployment diagram (possibly a degenerate one without nodes).

10.1.2 Notation

A component diagram is a graph of components connected by dependency relatio
Components may also be connected to components by physical containment repre
composition relationships.

A diagram containing component types and node types may be used to show co
dependencies, which are shown as dashed arrows (dependencies) from a client com
to a supplier component that it depends on in some way. The kinds of dependencies
guage-specific and may be shown as stereotypes of the dependencies.

The diagram may also be used to show interfaces and calling dependencies among
nents, using dashed arrows from components to interfaces on other components.
114 UML v 1.0, Notation Guide

Implementation Diagrams

e soft-
stances
n-time
s; they

tions.
uns on
e com-
dencies
10.1.3 Example

Figure 56. Component diagram

10.2 DEPLOYMENT DIAGRAMS

10.2.1 Semantics

Deployment diagrams show the configuration of run-time processing elements and th
ware components, processes, and objects that live on them. Software component in
represent run-time manifestations of code units. Components that do not exist as ru
entities (because they have been compiled away) do not appear on these diagram
should be shown on component diagrams.

10.2.2 Notation

A deployment diagram is a graph of nodes connected by communication associa
Nodes may contain component instances; this indicates that the component lives or r
the node. Components may contain objects; this indicates that the object is part of th
ponent. Components are connected to other components by dashed-arrow depen

Planner

Scheduler

GUI

reservations

update
UML v 1.0, Notation Guide 115

Implementation Diagrams

ces of
needed.

run on

t may
ase the
.

(possibly through interfaces). This indicates that one component uses the servi
another component; a stereotype may be used to indicate the precise dependency if

The deployment type diagram may also be used to show which components may
which nodes, by using dashed arrows with the stereotype «supports».

Migration of components from node to node or objects from component to componen
be shown using the «becomes» stereotype of the dependency relationship. In this c
component or object is resident on its node or component only part of the entire time

Note that a process is just a special kind of object (see Active Object).

10.2.3 Example

Figure 57. Nodes

AdminServer:HostMachine

Joe’sMachine:PC

Scheduler reservations

Planner

«database»
meetingsDB
116 UML v 1.0, Notation Guide

Implementation Diagrams

nerally
repre-
nd com-

e string

d of a

ompo-

s. This

n nodes
reotype
r net-
10.3 NODES

10.3.1 Semantics

A node is a run-time physical object that represents a computational resource, ge
having at least a memory and often processing capability as well. Nodes may be
sented as type and as instances. Run time computational instances, both objects a
ponent instances, may reside on node instances.

10.3.2 Notation

A node is shown as a figure that looks like a 3-dimensional view of a cube.

A node type has a type name:

node-type

A node instance has a name and a type name. The node may have an underlined nam
in it or below it. The name string has the syntax:

name ‘:’ node-type

The name is the name of the individual node (if any). The node-type says what kin
node it is. Either or both elements are optional.

Dashed-arrow dependency arrows show the capability of a node type to support a c
nent type. A stereotype may be used to state the precise kind of dependency.

Component instances and objects may be contained within node instance symbol
indicates that the items reside on the node instances.

Nodes may be connected by associations to other nodes. An association betwee
indicates a communication path between the nodes. The association may have a ste
to indicate the nature of the communication path (for example, the kind of channel o
work).
UML v 1.0, Notation Guide 117

Implementation Diagrams

 node

le) and
 repre-
n time,

s pro-
10.3.3 Example

This example shows two nodes containing an object (cluster) that migrates from one
to another and also an object that remains in place.

Figure 58. Use of nodes to hold objects

10.4 COMPONENTS

10.4.1 Semantics

A component type represents a piece of software code (source, binary, or executab
may be used to show compiler and run-time dependencies. A component instance
sents a run-time code unit and may be used to show code units that have identity at ru
including their location on nodes.

10.4.2 Notation

A component is shown as a rectangle with one small ellipse and two small rectangle
truding from its side.

Node1

Node2

«cluster»

x y

«cluster»

x y

«becomes»

«database»

w z
118 UML v 1.0, Notation Guide

Implementation Diagrams

pe may
low it,

cribes
onents
.

ntains

cesses
A component type has a type name:

component-type

A component instance has a name and a type. The name of the component and its ty
be shown as an underlined string either within the component symbol or above or be
with the syntax:

component-name ‘:’ component-type

A property may be used to indicate the life-cycle stage that the component des
(source, binary, executable, or more than one of those). Only executable comp
(including programs, DLLs, run-time linkable images, etc.) may be located on nodes

10.4.3 Example

The example shows a component with interfaces and also a component that co
objects at run time.

Figure 59. Component

10.5 LOCATION OF COMPONENTS AND OBJECTS WITHIN OBJECTS

Instances may be located within other instances. For example, objects may live in pro
that live in components that live on nodes. ‘

Dictionary spell-check

synonyms

Mailer

Mailbox
RoutingList
UML v 1.0, Notation Guide 119

Implementation Diagrams

ances)
e may

 with a
e prop-
nts the
 of the

ated on
10.5.1 Notation

The location of an instance (including objects, component instances, and node inst
within another instance may be shown by physical nesting. Alternately, an instanc
have a property tag “location” whose value is the name of the containing instance.

If an object moves during an interaction, then it may be as two or more occurrences
“becomes” dependency between the occurrences. The dependency may have a tim
erty attached to it to show the time when the object moves. Each occurrence represe
object during a period of time. Messages should be directed to the correct occurrence
object.

10.5.2 Example

See the other diagrams in this section for examples of objects and components loc
nodes as well as migration.
120 UML v 1.0, Notation Guide

Index
A
abstract state 24
action state 108
action, special 91
action-clause 96
activation 69
active object 82
activity 91
activity diagram 106
actor 63
aggregation 40
association 36
association class 37, 44
association name 36
association role 38
attribute 31

B
background information 4
binary association 36
bound template 27

C
call event 94
class 19
class diagram 18
class pathname 30
collaboration 73
collaboration context 75
collaboration diagram 73, 78
communicates 63
complex transition 97

component 118
component diagram 114
composite object 81
composition 47
concurrent substate] 92
constraint 6
context 75
creation (of an object) 88

D
decision 109
dependency 55
deployment diagram 115
derived element 59
design pattern 74
destination state 97
destruction (of an object) 88
discriminator 51
disjoint substate 92
do activity 91
dynamic classification 53

E
entry action 91
event 94
exit action 91
extends (a use case) 64
extensibility mechanism 13, 16

F
final state 92
UML v 1.0, Notation Guide 121

Index
G
generalization 51
generalization constraints 52
generic notation 10
graphic symbols 3
graphs 3
guard-condition 96

H
history state 99
hyperlinks 4

I
importing packages 30
initial state 92
interaction 77
interface 25
internal activity 90
internal transition 104
invisible links 4

L
label 12
link 83
list compartment 22
location of object 119

M
message (in a sequence diagram) 70
message flow 85
metaclass 29
multiple classification 53
multiple inheritance 53
Multiplicity 41

N
name 11
name compartment 21

n-ary association 45
navigability 39
navigation expression 60
node 117
note 5

O
object 79
object diagram 18
object flow 111
object lifeline 69
object state 111
operation 34
or-association 37
overview 1

P
package 7
parameterized class 26
participates (in a use case) 63
pathname 30
paths 4
pattern 74
powertype 51
programming-language type 15
property string 13

Q
qualifier 42

R
refinement 57
role (association) 38
rolename 40

S
send-clause 96
sending message

within state diagram 101
122 UML v 1.0, Notation Guide

Index
sequence diagram 66
signal event 94
source state 97
state 90
state diagram 89
state variable 90
stereotypes 16
string 10
stubbed transition 99
substate 91
swimlane 109
synchronization bar 97

T
tagged value 13
template 26
time event 94
timing mark 71
timing mark (in state diagram) 97
transition 96
transition time 97
transition to nested state 98
type 24

U
use case 63
use case diagram 62
use case relationships 63
uses (a use case) 64
utility 28

V
visibility 32
UML v 1.0, Notation Guide 123

Index
124 UML v 1.0, Notation Guide

	Contents
	1. Document Overview
	2. Diagram Organization
	2.1 Graphs and their Contents
	2.2 Drawing paths
	2.3 Invisible Hyperlinks And The Role Of Tools
	2.4 Background information
	2.4.1 Presentation options

	2.5 Note
	2.5.1 Notation
	2.5.2 Presentation options
	2.5.3 Example

	2.6 Constraint
	2.6.1 Notation
	2.6.2 Example

	2.7 Packages and Model Organization
	2.7.1 Notation
	2.7.2 Style guidelines
	2.7.3 Example

	3. Generic Notation
	3.1 Type-Instance Correspondence
	3.2 String
	3.2.1 Semantics
	3.2.2 Notation
	3.2.3 Presentation options
	3.2.4 Example

	3.3 Name
	3.3.1 Semantics
	3.3.2 Notation
	3.3.3 Example

	3.4 Label
	3.4.1 Notation
	3.4.2 Example

	3.5 Property String
	3.5.1 Semantics
	3.5.2 Notation
	3.5.3 Presentation options
	3.5.4 Example

	3.6 Type Expression
	3.6.1 Semantics
	3.6.2 Notation
	3.6.3 Example

	3.7 Stereotypes
	3.7.1 Semantics
	3.7.2 Notation
	3.7.3 Example

	4. Static Structure Diagrams
	4.1 Class diagram
	4.1.1 Notation

	4.2 Object diagram
	4.3 Class
	4.3.1 Semantics
	4.3.2 Basic notation
	4.3.3 Presentation options
	4.3.4 Style guidelines
	4.3.5 Example

	4.4 Name Compartment
	4.4.1 Notation

	4.5 List Compartment
	4.5.1 Notation
	4.5.2 Presentation options
	4.5.3 Example

	4.6 Type
	4.6.1 Semantics
	4.6.2 Notation

	4.7 Interfaces
	4.7.1 Notation
	4.7.2 Example

	4.8 Parameterized Class (Template)
	4.8.1 Semantics
	4.8.2 Notation
	4.8.3 Presentation options
	4.8.4 Example

	4.9 Bound Element
	4.9.1 Semantics
	4.9.2 Notation
	4.9.3 Style guidelines
	4.9.4 Example

	4.10 Utility
	4.10.1 Semantics
	4.10.2 Notation
	4.10.3 Example

	4.11 Metaclass
	4.11.1 Semantics
	4.11.2 Notation

	4.12 Class Pathnames
	4.12.1 Notation
	4.12.2 Example

	4.13 Importing a package
	4.13.1 Semantics
	4.13.2 Notation
	4.13.3 Example

	4.14 Attribute
	4.14.1 Semantics
	4.14.2 Notation
	4.14.3 Presentation options
	4.14.4 Style guidelines
	4.14.5 Example

	4.15 Operation
	4.15.1 Notation
	4.15.2 Presentation options
	4.15.3 Style guidelines
	4.15.4 Example

	4.16 Association
	4.17 Binary Association
	4.17.1 Notation
	4.17.2 Presentation options
	4.17.3 Style guidelines
	4.17.4 Options
	4.17.5 Example

	4.18 Association Role
	4.18.1 Notation
	4.18.2 Presentation options
	4.18.3 Style guidelines
	4.18.4 Example

	4.19 Multiplicity
	4.19.1 Notation
	4.19.2 Style guidelines
	4.19.3 Example

	4.20 Qualifier
	4.20.1 Notation
	4.20.2 Presentation options
	4.20.3 Style guidelines
	4.20.4 Example

	4.21 Association Class
	4.21.1 Notation
	4.21.2 Presentation options
	4.21.3 Style guidelines
	4.21.4 Example

	4.22 N-ary association
	4.22.1 Semantics
	4.22.2 Notation
	4.22.3 Style guidelines
	4.22.4 Example

	4.23 Composition
	4.23.1 Semantics
	4.23.2 Notation
	4.23.3 Design guidelines
	4.23.4 Example

	4.24 Generalization
	4.24.1 Notation
	4.24.2 Presentation options
	4.24.3 Details
	4.24.4 Semantics
	4.24.5 Example

	4.25 Dependency
	4.25.1 Notation
	4.25.2 Presentation options
	4.25.3 Example

	4.26 Refinement Relationship
	4.26.1 Semantics
	4.26.2 Notation
	4.26.3 Example

	4.27 Derived Element
	4.27.1 Notation
	4.27.2 Style guidelines
	4.27.3 Example

	4.28 Navigation Expression
	4.28.1 Notation
	4.28.2 Example

	5. Use Case Diagrams
	5.1 Use Case Diagram
	5.1.1 Notation
	5.1.2 Example

	5.2 Use Case
	5.2.1 Notation
	5.2.2 Presentation options
	5.2.3 Style guidelines

	5.3 Actor
	5.3.1 Notation

	5.4 Use case relationships
	5.4.1 Notation
	5.4.2 Example

	6. Sequence Diagrams
	6.1 Sequence diagram
	6.1.1 Notation
	6.1.2 Presentation options
	6.1.3 Example

	6.2 Object lifeline
	6.2.1 Notation
	6.2.2 Example

	6.3 Activation
	6.3.1 Notation
	6.3.2 Example

	6.4 Message
	6.4.1 Notation

	6.5 Transition Times
	6.5.1 Notation
	6.5.2 Example

	7. Collaboration Diagrams
	7.1 Collaboration
	7.1.1 Semantics
	7.1.2 Notation

	7.2 Design Pattern
	7.2.1 Notation

	7.3 Context
	7.3.1 Semantics
	7.3.2 Notation
	7.3.3 Example

	7.4 Interactions
	7.4.1 Semantics
	7.4.2 Notation

	7.5 Collaboration diagram
	7.5.1 Notation
	7.5.2 Example

	7.6 Object
	7.6.1 Notation
	7.6.2 Presentation options
	7.6.3 Style guidelines
	7.6.4 Variations
	7.6.5 Example

	7.7 Composite object
	7.7.1 Notation
	7.7.2 Presentation options
	7.7.3 Style guidelines
	7.7.4 Example

	7.8 Active object
	7.8.1 Notation
	7.8.2 Example

	7.9 Links
	7.9.1 Notation
	7.9.2 Example

	7.10 Message flows
	7.10.1 Notation
	7.10.2 Presentation options
	7.10.3 Example

	7.11 Creation/destruction markers
	7.11.1 Notation
	7.11.2 Presentation options
	7.11.3 Example

	8. State Diagram
	8.1 State Diagram
	8.1.1 Notation

	8.2 States
	8.2.1 Semantics
	8.2.2 Notation
	8.2.3 Example

	8.3 Substates
	8.3.1 Notation
	8.3.2 Example

	8.4 Events
	8.4.1 Semantics
	8.4.2 Notation
	8.4.3 Example

	8.5 Simple transitions
	8.5.1 Semantics
	8.5.2 Notation
	8.5.3 Example

	8.6 Complex transitions
	8.6.1 Semantics
	8.6.2 Notation
	8.6.3 Example

	8.7 Transitions to nested states
	8.7.1 Semantics
	8.7.2 Notation
	8.7.3 Presentation options
	8.7.4 Example

	8.8 Sending messages
	8.8.1 Semantics
	8.8.2 Notation
	8.8.3 Example

	8.9 Internal transitions
	8.9.1 Semantics
	8.9.2 Notation

	9. Activity Diagram
	9.1 Activity diagram
	9.1.1 Notation
	9.1.2 Example

	9.2 Action state
	9.2.1 Semantics
	9.2.2 Notation
	9.2.3 Presentation options
	9.2.4 Example

	9.3 Decisions
	9.3.1 Notation
	9.3.2 Example

	9.4 Swimlanes
	9.4.1 Notation
	9.4.2 Example

	9.5 Action-Object Flow Relationships
	9.5.1 Notation
	9.5.2 Example

	9.6 Optional Stereotypes
	9.6.1 Stereotypes

	10. Implementation Diagrams
	10.1 Component diagrams
	10.1.1 Semantics
	10.1.2 Notation
	10.1.3 Example

	10.2 Deployment diagrams
	10.2.1 Semantics
	10.2.2 Notation
	10.2.3 Example

	10.3 Nodes
	10.3.1 Semantics
	10.3.2 Notation
	10.3.3 Example

	10.4 Components
	10.4.1 Semantics
	10.4.2 Notation
	10.4.3 Example

	10.5 Location of Components and objects within obj...
	10.5.1 Notation
	10.5.2 Example

	Index

