A Dependency Markup Language
for Web Services

Robert Tolksdorf

Freie Universitat Berlin

Institut fur Informatik TR
Netzbasierte Informationssysteme e @

iustitia
libertas
Freie Universitit Berlin

mailto:research@robert-tolksdorf.de
http://www.robert-tolksdorf.de

[1] © Robert Tolksdorf, Berlin

Overview

» Current description mechanisms of Web-Services are
not adequate

« Dependencies of activities can be used do describe
composite services better

~ Dependency Markup Language proposed

[2] © Robert Tolksdorf, Berlin

Proposals for the description of Web Services

Lang. External Internal
WSFL functional interface specified data- and control flows
specified
XLANG interface specified with WSDL control flow specified,
event handling
WSCL allowed interactions (conversation) not specified
specified by interaction-transition net
DAML-S functional interface specified control flow specified by
imperative constructs
ASDL allowed usage specified by state- control flow specified
(conditioned) transition net
WSMF functional interface specified with pre- not specified
and postconditions
BPSS interactions specified by message state/transition net
exchanged
BPML interactions specified by message control flow specified by

exchanged

imperative constructs

[3] © Robert Tolksdorf, Berlin

Visiting a restaurant

= Restaurants offer a service which consists of taking
an order, preparing food, serving it and finally
collecting

» Interface (free style notation):
{wallet!=empty}
void visitRestaurant(Money wallet, Order whatToEat)

{repleted=TRUE}

Restaurant

Service flow

= But:
u Full service

Fast food
Buffet
Church supper

take order—cook—serve—collect
cook—take order—collect—serve
cook—take order—serve—collect
collect—take order—cook—serve

(after [WLO5])

[4] © Robert Tolksdorf, Berlin

Problem Coordination theory/1

» Qualities of services: » “Coordination is management of dependencies”[Mc94]
« External interface
« But also: Internal behaviour of interest = Kinds of dependencies and how they are managed by
coordination mechanisms [Cro91,Del96]:
= Current Web Service descriptions cannot capture that Coordination mechanism Dependency managed
+ Internal behaviour is not specified Resource allocation Shared resources
- Internal behaviour is specified too low level o -
Notification Prerequisite
Transportation Transfer
. Needed: p ratic | Producer/Consumer
Standardization Usability

- Express “visiting a restaurant” as an abstract process that

is implemented by various concrete ones : Synchronization Simultaneity :
- Express concrete behaviour at right semantic level : Goal selection :
(eg: cooked freshly after my order) g - Task/Subtask :
° Decomposition o
Coordination theory/2 Abstraction
« [RGOO,RGO1]: T T—— = Different granularltlgs:
Dependency Dependency Mechanism + concrete processes in restaurants
class Sequence Sequence « abstract spec. of “freshly cooked” (cook depends on order)
e Strict sequence Choice - most abstract notion “restaurant visit”
Real-time Alternative Conditioned = All behaviours above are equivalent wrt. interface
Loose sequence choice and post-condition of service
Causal Data dependency lteration P - Not all abstractions are useful ("do something")
Resource dependency Conditioned loop . rr oy . . ce
" : » Automatic classification of behaviour is difficult
Generalization/ Accidental)
Abstraction Refinement Concurrency Enforced - Typing pr.ocessgs _[MCL+99] o o
Aggregation Prohibited . E;Ve\:lllgghmng existing processes/deriving specializations

= Dependencies more adequate than control flows
(a.b and b.a manage exclusive operation of a and b)

« We model behaviour by dependencies

We relate abstractions and specializations explicit

[7] © Robert Tolksdorf, Berlin
u

[8] © Robert Tolksdorf, Berlin

Typing

DML

» Port- and service-types similar to interfaces in
OMG/CORBA. There:

- Interface-types related by specialization / generalization
plus formal notion of a contravariant subtyping of
interfaces

- Relations used by a trader in service discovery

« Proposal: dependencies used as additional
information about the internal workings of a service

= Service dependency typing:
- Clients can express abstract expectations on the
dependencies ruling the workings of the service.
« Level of detail in the description can depend on how much
information the service provider is willing to disclose.
- Abstraction and specialization express a relative semantic
of what the services do.

[9] © Robert Tolksdorf, Berlin

« Dependency Markup Language DML

- Dependency types are defined

- Dependency types can be related

« Processes are defined by a set of dependencies
« Processes can be related

1

Dependency types

Processes/1

<dependency-type id="unizh-dependency" specializes="any"/>

<dependency-type id="temporal"
specializes="unizh-dependency"/>

<dependency-type id="strictSequence">
<specializes>temporal looseSequence</specializes>
</dependency-type>

<dependency-type id="realTime" specializes="temporal"/>

<dependency-type id="causal"
specializes="unizh-dependency"/>

<dependency-type id="looseSequence" specializes="causal"/>

<dependency-type id="dataDependency" specializes="causal"/>

<dependency-type id="resourceDependency"
specializes="causal"/>

<dependency-type id="abstraction"
specializes="unizh-dependency"/>

<dependency-type id="generalization"
specializes="abstraction"/>

<dependency-type id="refinement" specializes="abstraction"/>

<dependency-type id="aggregation" specializes="abstraction"/>u

<process id="restaurantVisit"

name="Visit to a restaurant'">

<description>An abstract description of a
restaurant visit where only cooked food is eaten.

</description>

<dependency type='"looseSequence"
from="cook" to="serve"/>

</process>

[10] © Robert Tolksdorf, Berlin

<process id="freshlyCooked"
specializes="restaurantVisit">
<description>An abstract description where
things are cooked after an order.
</description>
<dependency type="looseSequence"
from="takeOrder" to="cook"/>

</process>

1] © Robert Tolksdorf, Berlin

[12] © Robert Tolksdorf, Berlin

Processes/?2

<process id="fullService" specializes="freshlyCooked">
<dependency type="strictSequence"
from="takeOrder" to="cook"/>
<dependency type="strictSequence"
from="cook" to="serve"/>
<dependency type='"strictSequence"
from="serve" to="collect"/>

</process>

<process id="fastFood" specializes="restaurantVisit">
<dependency type='"strictSequence"
from="cook" to="takeOrder"/>
<dependency type='"strictSequence"
from="takeOrder" to="collect"/>
<dependency type="strictSequence"
from="collect" to="serve"/>

</process>

[13] © Robert Tolksdorf, Berlin

Coordination environment

» Coordinating Web Services
- Idea: Coordination services bind themselves to the
dependencies they manage
- Coordination service generates specific schedules with their
help
= DML based Service discovery
« Idea: Specific control flow is specialization of abstract
process
- Existing Web Services can be classified and traded

» Automatic classification
« Idea: Calculate specialization
« Hard, limited

[14] © Robert Tolksdorf, Berlin

Outlook / Summary

« Implement coordination environment

» Consider multiparty dependencies

« Perhaps better build on RDF than use a separate
markup language

= Build dependency catalogue

» Current description mechanisms of Web-Services are
not adequate

= Dependencies of activities can be used do describe
composite services better

« Dependency Markup Language proposed

- www.robert-tolksdorf.de/dependencies

[15] © Robert Tolksdorf, Berlin

