
NSPF: Designing a Notification
Service Provider Framework

for Web Services

Bahman Kalali, Paulo Alencar and Donald Cowan

University of Waterloo, CANADA
School of Computer Science

Computer Systems Group
{bkalali, palencar, dcowan}@csg.uwaterloo.ca

Outline

p Introduction

p Background: Three-role service-oriented
architecture

p Motivation to extend the three-role architecture

p NSPF: Use Case Scenarios

p Design of the NSPF

p Patterns applied to the design of NSPF

p Web service hierarchy of events

p Conclusions and future work

Bahman Kalali

Introduction

Focus Of This Research Project

p Finding problems related to changes in the interface
of Web services and availability of Web services

p Providing a solution in the form of a service-oriented
notification provider framework

p Using object-oriented design patterns to design and
document a service-oriented framework

Bahman Kalali

Service-oriented Architecture

p A typical Web service architecture represents three
roles:

3 Service provider
3 Service requestor
3 Service registry

p It describes three basic operations:
3 Publish
3 Find
3 Bind

p It also has two artifacts:
3 Service
3 Service description

Bahman Kalali

Service-Oriented Architecture

A typical three-role architecture

Find Publish

Bind

Service
registry

Service
requestor

Service
provider

Source

Service
description

Service
description

Bahman Kalali

Motivation to Extend the Three-Role Architecture

p What happens when a Service Provider
p changes its Web Service interface description?

p registers a business in UDDI without providing any service?

p becomes disabled?

p provides a new service?

p Proposed solution
p A Notification Service Provider Framework (NSPF)

Bahman Kalali

Sample Problem

Web Service Aggregation

Port type A

OP1

OP3

OP2

Port type C
OP2

OP1

Port type D OP3

Port type B
OP1

OP2

Service requestor W

Service provider X

Service provider Z

Service provider Y

OP1

Bahman Kalali

Extension to Three-Role Architecture

Four-Role Architecture

Find Publish

Service
registry

Service
description

search/publish WSDL

store/newVersion
WSDL

Service
provider

findWSDL/
storeWSPN

NSPF

Service
requestor

Source

Service
description

Bind

Bahman Kalali

p Notification of changing Web Service Interface
3 Service providers send new version of their interfaces to NSPF
3 NSPF is responsible to keep track of web service descriptions
3 NSPF notifies service requestors about new version of an interface

NSPF: Use Case Scenarios

p Notification of Inactive Web service provider and
replacement

3 NSPF periodically re-binds to each service provider to find disabled
services

3 NSPF notifies all the service requestors about disabled services
3 NSPF finds replacement for disabled services and notifies requestors

Bahman Kalali

p Notification of a new available Web service Interface
3 Service providers for the first time send their interfaces to NSPF

3 NSPF notifies all requestors that used similar interfaces before

NSPF: Use Case Scenarios (Cont’d…)

p Notification of top-ranked Interfaces to Web service requestor

3 NSPF periodically searches for each service requestor in its local native
database

3 NSPF finds portType that is used by a service requestor

3 NSPF finds all the service providers that implemented the same portType

3 NSPF selects the service provider that has the highest number of service
requestors associated with the portType

3 NSPF notifies the service requestor about the top-ranked service provider

Bahman Kalali

Design of the NSPF

p Based on Multi-Tier Architecture : Four Layers
3 Proxy Layer
3 Web Server Layer
3 Application Notification Server Layer
3 Application Worker Layer

p Basic Operations

3 storeWSDL

3 findWSDL
3 storeWSPN
3 newVersionWSDL

Bahman Kalali

<<Interface>>
HTTPInterface

HTTPServer

SOAPProcessor

<<interface>>
WManager

interface

WSNSProvider

+ storeWSDL ()
+ findWSDL ()
+ storeWSPN ()
+ newVersionWSDL ()

WManager

<<interface>>
WorkerInterface

WSDLPublisher

<<interface>>
Filter

+ apply ()

Event

<<interface>>
Subscriber

+ inform ()

EventService
+ subscriber
+ filter
subscription list
- event type
+ publish ()
+ subscribe ()
+ unsubscribe ()

OODatabase
Worker

ServiceController
Worker

UDDIClient

WSDL

WSPN

InterfaceRequestor

- requestorID

InterfaceProvider

- provideID
- interfaceID

Application Worker LayerApplication Notification Server LayerWeb Server LayerProxy Layer

It contacts UDDS registry
to find services

- InterfaceUsed

- filters

- subscribers

- workers

1

1

1

1

1

1

1

1

ServiceDiscovery
Worker

NativeXMLDatabase
Worker

1

*

*

*

*

*

*

*

*

*

0.*

InterfaceChangeEvent RecommendedInterfaceEvent InterfaceReplacementEvent NewInterfaceEvent ServiceStatusEvent

OperationAdded
RemovedEvent MessageFormatEvent PortEvent ServiceActivatedEvent ServiceInactivatedEvent

MessageNameEvent MessageParamTypeEvent MessageNumber
OfParametersEvent PartTypeEvent BindingPortEvent ServicePortEvent

Event Property

- name: string (idl)
- value: string (idl)

1 0.*

Web Service Hierarchy of Events

Patterns Applied to the Design of NSPF

Proxy Pattern

Singleton
Pattern

Event Notifier Pattern
(Observer and

Mediator Patterns)

Interface
Delegation

Pattern

Singleton
Pattern

Singleton
Pattern

Interface
Delegation

Pattern

Proxy Pattern

Proxy Layer Web Server Layer Application Notification Server Layer Application Worker Layer

Item Description
Pattern

Abstract Factory

Bahman Kalali

Conclusions and Future Work

p NSPF is an extension to the Web service three-role architecture

p NSPF is designed with Software Engineering principles in mind

p A first prototype:
p Storing WSDL files into Xindice XML Database

p Using XPath expressions to define WSPN

p Future Work
p Improving the design to support content-based publish-subscribe

p Defining XML Schema for Web service event types

p Improving the design to support scalable distributed native

XML databases

p Implementing a NSPF plug-in prototype using Eclipse

p Regeneration of Proxies (Auto-Proxy Regeneration)

Bahman Kalali

